Loading Events

Space Science & Astrobiology Division Special Seminar

Title: Shocked molecular gas and the origin of cosmic rays — Speaker: William Reach, Direct Science Mission Operations for the Stratospheric Observatory for Infrared Astronomy — Abstract: When massive stars reach the end of their ability to remain stable with core nuclear fusion, they explode in supernovae that drive powerful shocks into their surroundings. Because massive stars form in and remain close to molecular clouds they often drive shocks into dense gas, which is now believed to be the origin of a significant fraction of galactic cosmic rays. The nature of the supernova-molecular cloud interaction is not well understood, though observations are gradually elucidating their nature. The range of interstellar densities, and the inclusion of circumstellar matter from the late-phase mass-loss of the stars before their explosions, leads to a wide range of possible appearances and outcomes. In particular, it is not even clear what speed or physical type of shocks are present: are they dense, magnetically-mediated shocks where H2 is not dissociated, or are they faster shocks that dissociate molecules and destroy some of the grains? SOFIA is observing some of the most significant (in terms of cosmic ray production potential and infrared energy output) supernova-molecular cloud interactions for measurement of the line widths of key molecular shocks tracers: H2, [OI], and CO. The presence of gas at speeds 100 km/s or greater would indicate dissociative shocks, while speeds 30 km/s and slower retain most molecules. The shock velocity is a key ingredient in modeling the interaction between supernovae and molecular clouds including the potential for formation of cosmic rays.


Download Link Size
260 KB