Exobiology Branch (Code SSX)

The CheMin Instrument on the Mars Science Laboratory
The CheMin Instrument on the Mars Science Laboratory

Mission Statement

The branch conducts interdisciplinary basic research in exobiology to understand pre-biotic chemistry, and the origin, evolution, distribution, and future of life in the Universe. We provide an interface between the external academic community and NASA programs. Our work also informs the selection, design and development of NASA life detection missions; the design and fabrication of spaceflight instruments to evaluate habitability and detect biosignatures; and the interpretation of astrobiology mission and astronomical data.

Exobiology Branch 2015
Exobiology Branch 2015 – 1st row left to right. David Blake, Orlando Santos, Esther Weber, Mark Ditzler, David Des Marais, Linda Jahnke 2nd row left to right. Arthur Weber, George Cooper 3rd row left to right. Michael Kubo, Rocco Mancinelli, Jackson Lee, Tori Hoehler 4th row left to right. Sanjoy Som, Thomas Murphy, Andro Rios, Mike Wilson 5th row left to right. Fathi Karouia, Craig Everroad, Milena Popović, Samantha Yim, Niki Parenteau 6th row left to right. Joshua Reynolds, Bennett Kapili, Melissa Thang, Yasaman Mortensen 7th row left to right. Adrian Carabello, Leslie Bebout, Marisa Mayer, Angela Detweiler, Mastewal Abate, Oana Marcu Sandy Dueck, Joseph Solvason – Principal Investigators not pictured. Brad Bebout, Tom Bristow, Andrew Pohorille, David Summers

 

 

The CheMin Instrument

The Exobiology Branch is home to David Blake, the Principal Investigator for the CheMin instrument on the Mars Science Laboratory, scheduled for launch in 2011.

CheMin field testing in Death Valley
CheMin field testing in Death Valley

 

A Miniature Gas Chromatograph-Ion Mobility Spectrometer
A Miniature Gas Chromatograph-Ion Mobility Spectrometer

 

The CheMin instrument utilizes X-ray diffraction and flourescence to provide difinitive minerology of rock samples (both elemental analysis and crystal structure determination).

CheMin
The CheMin instrument being integrated onto the MSL rover. Next stop, Mars!

 

Early Habitable Environments and the Evolution of Complexity

The Exobiology Branch is home to David Des Marais, the Principal Investigator of the NASA Astrobiology Institute (NAI) Ames Team, which focuses on Early Habitable Environments and the Evolution of Complexity.  The overarching goal of this scientific program is to understand the creation and distribution of early habitable environments in emerging planetary systems.  The Ames Team provides a program of integrative, mission-enabled and mission-enabling research on habitability and a thematically related program of education and public outreach focused around informal education in high-impact venues.  Andrew Pohorille, Tori Hoehler, and Sandy Dueck are also members of the Exobiology Branch and hold key roles as Lead Co-Investigators on the team.  To learn more about the NAI Ames Team, visit their website at www.amesteam.arc.nasa.gov.

 

NAI Team
NAI Team

 

Origin of Life Research

For nearly 40 years, the Exobiology Branch at Ames has been the main center for origins of life research at NASA, and a world leader in this scientific area. Currently, the branch has the unique feature of being the only center within the NASA Astrobiology Program that has a sustained, long-term program of theoretical and computational studies on the origins of life. This research program, which contains both molecular and system-level components, is leveraged by the supercomputing facilities at Ames and by Ames’ status as the NASA lead center in information science and technology.

 

Pohorille Article
Pohorille Article

 

The image shown above is the cover art for the latest issue of the Journal of Physical Chemistry, highlighting an article by Andrew Pohorille, a Principal Investigator in the Branch, with co-authors Christopher Jarzynski and Christophe Chipot, titled “Good practices in free-energy calculations”. From the abstract: “As access to computational resources continues to increase, free-energy calculations have emerged as a powerful tool that can play a predictive role in a wide range of research areas. … In this contribution, the current best practices for carrying out free-energy calculations using free energy perturbation and nonequilibrium work methods are discussed demonstrating that, at little to no additional cost, free-energy estimates could be markedly improved and bounded by meaningful error estimates.”

Dr. Pohorille is also the recepient of this year’s H. Julian Allen Award, bestowed by NASA Ames for best research paper. Titled “Calculating free energies using average force”, the paper appeared in the Journal of Chemical Physics (co-author Eric Darve), Volume 115, Number 20, November 2001. According to the Citation Index in the Web of Science the paper has been cited 111 times as of March 2010. From the abstract: “A new, general formula that connects the derivatives of the free energy along the selected, generalized coordinates of the system with the instantaneous force acting on these coordinates is derived. The instantaneous force is defined as the force acting on the coordinate of interest so that when it is subtracted from the equations of motion the acceleration along this coordinate is zero. The formula applies to simulations in which the selected coordinates are either unconstrained or constrained to fixed values.”

The Branch is also home to Dr. Arthur Weber, a SETI Institute researcher, who works together with his wife Esther to study the pre-biotic chemistry of sugars, and how these molecules may have led to the origin of life.

 

Weber Lab - The role of sugars in pre-biotic chemistry.
Weber Lab – The role of sugars in pre-biotic chemistry.

 

Facilities

The Branch is housed in Building 239 at NASA Ames Research Center. Laboratory facilities available include analytical equipment for the characterization of gas and aqueous chemistry, instruments for the detection of various biomarkers including sugars and organics, microbiology facilities including the culture of microbial mat communities, electron and RAMAN microscopes, a molecular biology suite, and informatics computational capabilities.

 

 

 

Code SSX Highlights

Curiosity Team Wins 2012 Collier Trophy

AOPA Pilot (3/14, Namowitz) reported on the same day NASA was announcing the first findings from Curiosity’s drill, “the NASA/JPL Mars Science Laboratory/Curiosity Project Team learned that another pending question had been answered in the positive: The National Aeronautic Association announced that the team had won the 2012 Robert J. Collier Trophy ‘in recognition of […]

Read More…

CheMin analyzes first drilled sample on Mars
CheMin analyzes first drilled sample on Mars

Left image: At the center is the hole in a rock called “John Klein” where the Curiosity rover conducted its first sample drilling on Mars. The sample-collection hole is 0.63 inch (1.6 centimeters) in diameter and 2.5 inches (6.4 centimeters) deep. The “mini drill” test hole near it is the same diameter, with a depth […]

Read More…

Curiosity Rover To Start Analyzing Its First Sample

The CBS Evening News javascript:mediaPopup(‘http://media.bulletinnews.com/playclip.aspx?clipid=8cfddc6fc0ea6fb&pub=nasa#20130221114551143232218166′) (2/20, story 9, 0:25, Pelley, 5.58M) reported, “We…saw some powerful images today from Mars.” Discussing the Curiosity rover mission, “NASA said today that it scooped up about a tablespoon of powdered rock which will now be analyzed to determine what’s in it. Curiosity is looking for signs that Mars once […]

Read More…

Curiosity Rover To Soon Ingest Rock Sample

The Cleveland Leader http://www.clevelandleader.com/node/20192 (2/17, Kent) reports, “NASA’s Mars Curiosity rover successfully drilled into Martian rock for the very first time without any complications, and is now readying to ingest the rock sample that it picked up about a week ago. The mission’s chief scientist, Joh Grotzinger, says that he expects this to happen very […]

Read More…

Curiosity’s Drilling Providing Tools For Future Mars Missions

New Scientist http://www.newscientist.com/article/dn23161-curiositys-first-drilling-hints-at-martian-mining.html (2/13, Grossman) reports Curiosity’s first drill on Mars this past weekend “could lay the groundwork for future Mars explorers to build structures or even to mine the Red Planet.” Louise Jandura of the Jet Propulsion Laboratory said, “Drilling anywhere is hard, but drilling on a rover kicks it up a notch.” JPL […]

Read More…

Photographer Develops Interactive Panorama From Curiosity Images

Photographer Develops Interactive Panorama From Curiosity Images. The Wired http://www.wired.com/wiredscience/2013/02/curiosity-drill-panorama/ (2/12, Mann, 798K) “Wired Science” blog reports on the Curiosity rover’s first drill, noting, “With this incredible interactive panorama, you can stand right beside the rover and see both its amazing environment and the fruits of its labor.” It was developed by photographer Andrew Bodrov […]

Read More…

Curiosity Collecting First Samples For Analysis

NBC Nightly News javascript:mediaPopup(‘http://media.bulletinnews.com/playclip.aspx?clipid=8cfd5df3196b33b&pub=nasa#20130211120609143232218166′) (2/10, story 8, 0:15, Holt, 7.86M) reported, “The Mars Rover Curiosity did something that had never been done before. It drilled a hole into the rocky surface of the planet and is now collecting the powdered results for analysis. It’s an area that shows signs if it was once under water, […]

Read More…

Curiosity Makes “Mini Drill Test” Into Rock

The AP (2/8) reports, “The Curiosity rover has drilled a test hole in a Martian rock in preparation for the real thing.” NASA released images yesterday of the results of the “mini drill test” which it commanded Curiosity to make before full drilling operations. The BBC News (2/8, Amos) notes that “soon, Curiosity will be […]

Read More…

Curiosity Helping Prepare For Manned Missions To Mars

NASASpaceFlight http://www.nasaspaceflight.com/2013/02/curiosity-will-help-humans-reach-mars/ (2/5, Bergin) reports, “As NASA’s Mars Science Laboratory (MSL) continues to impress during its mission on the Red Planet marked by another milestone via the use of its drill for the first time NASA Associate Administrator for the Science Mission Directorate, John Grunsfeld believes Curiosity is providing vital information ahead of potential crewed […]

Read More…

Pryzak Explains How Curiosity Receives Its Instructions

The Oroville (CA) Mercury-Register http://www.orovillemr.com/news/ci_22479285/nasa-computer-expert-tells-chico-audience-joys-exploring (1/30, Aylworth) reports Guy Pryzak, interface designer in the Human Computer Interaction Group at the Ames Research Center, “was in Chico Tuesday, explaining the technology that allows people on earth to actively explore Mars,” specifically in regards to the Curiosity rover. Speaking to the Chico Rotary Club, Pryzak noted how […]

Read More…