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Abstract

Small but macroscopic particles—chondrules, higher temperature mineral inclusions, metal grains, and their like—dominate the fabric of
primitive meteorites. The properties of these constituents, and their relationship to the fine dust grains which surround them, suggest that
they led an extended existence in a gaseous protoplanetary nebula prior to their incorporation into their parent primitive bodies. In this paper
we explore in some detail the velocities acquired by such particles in a turbulent nebula. We treat velocities in inertial space (relevant to
diffusion), velocities relative to the gas and entrained microscopic dust (relevant to accretion of dust rims), and velocities relative to each
other (relevant to collisions). We extend previous work by presenting explicit, closed-form solutions for the magnitude and size dependence
of these velocities in this important particle size regime, and we compare these expressions with new numerical calculations. The magnitude
and size dependence of these velocities have immediate applications to chondrule and CAIl rimming by fine dust and to their diffusion in the
nebula, which we explore separately.

0 2003 Elsevier Inc. All rights reserved.

1. Background drules. Most workers in the field believe that chondrules are
formed by either localized or nebula scale energetic events
1.1. Introduction operating on freely floating precursors of comparable mass,

at some location or locations in the protoplanetary nebula.
The fabric of the most primitive meteorites undoubtedly However, some still maintain they are made in or on primi-
contains many clues as to their origin. While most chondrites tive bodies, or in collisions between them. In a hybrid sce-
are samples of surfaces that have been well worked overnario, some suggest they are formed in shock waves gener-
by impacts and stirring (“regolith breccias”), the dominance ated by already-formed planetesimals and thus that they are
of chondrules and like-sized objects remains clear. How it a secondary phenomenon to primary accretion of planetesi-
came about that most chondrite parent bodies are so domimals. See, e.g., Grossman (1989), Grossman et al. (1989),
nated by particles with such a well-defined range of physical, Boss (1996), Connolly and Love (1998), and Jones et al.
chemical, and petrographic properties remains one of the big(2000) for reviews of hypotheses on this long-controversial
puzzles of meteoritics. Since there are relatively few exam- and perennially fascinating subject.
ples of anything larger than 0.1- to 10-mm size particles in  Another meteorite constituent of great interest is the min-
most primitive planetesimals, the way such particles interact eral grains called Ca—Al-rich refractory inclusions (CAls)—
with the gaseous nebula is of prime importance. so-called because their constituent minerals condense out
Fe—Mg—Si—O mineral chondrules, which solidified from gf nebula gas at a much higher temperature than do chon-
a melt, constitute 30-80% of primitive meteorites. There are gryles, These objects are widely believed to be direct nebula
anumber of extant hypotheses for the formation of the chon- ~qyndensates and have a complex subsequent thermal history
which has some similarities to that of chondrules and some
~* Corresponding author. differences. There is some indication from radioisotope ages
E-mail addresscuzzi@cosmic.arc.nasa.gov (J.N. Cuzzi). that CAls might be~ 10° years older than the chondrules,
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but this remains slightly controversial. They make up 1-10% to each other) of particles in a turbulent nebula. They cir-
of primitive meteorites depending on type, and their size dis- cumvented the thorny problem of “essential nonlinearity”
tribution is broader than that of the chondrules. How these (cf. Meek and Jones, 1973) by translating clever physical
high-temperature minerals find themselves intimately mixed insights into mathematics and adopting a VE|OCiW autocor-
with lower temperature minerals remains a puzzle. relation function approach, which we discuss in more detail

It remains unresolved at this time whether the nebula gas|aer. while the relative velocity between particles and gas,

was turbulent or laminar during the chondrule era. In pre- v seryes an important internal role in their solutions, nei-

vious Papers, we have suggested that some Of. the qbservegqer VJIMR nor MMV say much about it. Yetpq is the de-
properties of chondrules themselves—their typical size and terminant quantity for accretion of rims of fine dust grains by

size distribution—can be associated with, and easily ex- small, macroscopic objects (Paque and Cuzzi, 1997; Cuzzi
plained by, the effects of weak nebula turbulence (Cuzzi et ' p ) d L T
et al., 1998; Morfill et al., 1998). Our goal in this paper is

al., 1996, 2001). Nevertheless, a consistent end-to-end sce , d h icles i h
nario forformationof primitive bodies in this environment, 0 duantifyVp, Vpq, andVpp for such particles in a way that
which relies on these processes, is not yetin hand. In this pa-8XPresses the formulation of VIMR and MMV in simple, an-

per, we focus on the velocity evolution of this specific class alytical, closed-form solutions—allowing deeper insights to
of partides in a Weak|y turbulent nebula as a Step toward be gained into the hiStory of chondrules and like-sized parti-
developing a more complete scenario that operates to pro-cles in the protoplanetary nebula.
duce primitive bodies in a similar way across a variety of In this paper, we determine velocities of all three kinds—
environments. The velocity evolution is critical for our un-  Vp, Vpg, and Vpp—with emphasis on particles having stop-
derstanding of several important aspects of chondrules andping timests much less than the large eddy time scale, and,
chondrites: more specifically, comparable to the overturn timef the
smaller eddies. Particles in this size regime have behavior
(a) the radial distribution and redistribution or transport of more complex than tiny “dust” grains, which are essentially
chondrules and/or CAls, once formed, before their ac- {rapped to the gas flow on all scales. In particular, particles
cumulation into parent bodies; with 75 = 1, are subject to “preferential concentration” by
(b) the presence of fine-grained rims on chondrules, CAIS, |54 tactors in turbulence, and based on some of its appar-

and other coarse patrticles in primitive chondrites (Met- 5 S .
, ent fingerprints in the meteorite record, we have suggested
zler and Bischoff, 1996; Brearley and Jones, 1998); and _ . g9erp . A 99
a link among this process, chondrules, and primary accre-

c) collision rates and velocities between chondrule-sized . . . .
(© tion. Specifically, we refer to the fact that tigpical size

articles.
P and theshape of the size distributiaf chondrules are read-

The main goal of this paper is to provide a theoretical frame- 1l €xplained by turbulent concentration (Cuzzi et al., 1996,
work within which we can better understand millimeter- to 2001). In other papers (Cuzzi et al., 2003; Cuzzi, in prepara-
centimeter-size particle evolution in general. We accomplish tion) we explore the possibility that turbulent diffusion due
this in Sections 2 (new gas velocity autocorrelation func- to Vp might help us understand the puzzling mix of CAls
tion and analytical approximations) and 3 (new supporting and chondrules in the same meteorites and that the func-
numerical calculations). In other papers we apply these re-tional form of Vpg might reveal still another fingerprint of
sults to diffusion and dust rimming of meteorite constituents turbulent concentration.

(Cuzzi et al., 2003; Cuzzi, in preparation). Particles are aerodynamically classified by their Stokes
_ o numberSt, the ratio of their stopping tima to the overturn
1.2. Particle velocities in turbulence time of some characteristic eddy. We will make use of Stokes

numbers defined relative to two different eddy overturn time

Astrophysical modeling of the basic physics of parti- gcgjes: the Stokes number relative to the largest, or integral
cle behavior in fluid flows, whether laminar or turbulent, oo eddy time;.: St = 1s/12, and that defined relative to

tends to begin and end with the classic papers by Whippleth :
. . o e smallest, or Kolmogorov scale, eddy timeSt, =ts/1,.
(1973), Adachi et al. (1976), Weidenschiliing (1977, 1980), The overturn time of thg largest scale e()i(g;snge?leralslil ’r]e—

and Volk et al. (1980, henceforth VIMR; also Volk et al., i . .
1978), with important recent updates by Markiewicz et al. garded as the local orbit period. Preferentially concentrated

(21991; henceforth MMV). In the fluid dynamics literature, particles (choqdrules,V\{e believe) hat =1 andSt. « 1.
however, the study of particle motions in fluid flows has For these particles, which are 'sma.IIer than the gas molecu-
both a long history and a robust ongoing presence. This his-1ar mean free path, the stopping time= rps/cpg, where

tory is nicely summarized by Meek and Jones (1973). More ” is particle radiusps is particle material density; is the
recent work in the fluids literature is noted in various rele- nebula sound speed, apg is the nebula gas density (Wei-
vant places in the following. VJMR first developed a useful denschilling, 1977). That iss and thus botlst, andSt, are
formalism for calculating the dispersion velociti&g (rel- linearly proportional to particle radiusTable 1 summarizes
ative to inertial space) and collision velociti&gp (relative these and other terms.
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Table 1 malization criterion
List of commonly used symbols X X
.. J J 3

Parameter Definition / E(k) dk = ng/2 _ / EL(k/kL)_5/3 dk=2E k; .
c gas molecule thermal speed 2
E (k) turbulent kinetic energy at wavenumber ki ki 1)
H nebula vertical scale height These definitions lead to our specific definition .f =
k eddy wavenumber . . .
‘ wavenumber of largest scale edd 1/kz Vg. The turbulent gas motions induce fluctuating ve-

L g y LT . . . . .
iy wavenumber of Kolmagorov (smallest) scale eddy locities in thg particle populatpn, Ieadmg to diffusiovij,
L integral or largest scale in turbulent energy spectrum Mutual collisions ¥pp), and motion relative to the local gas
r particle radius (Vpg)-
R gas velocity autocorrelation function VIMR deriveV}, formally by a backward time integration
Re flow Reynolds number of the instantaneous acceleration (their Egs. (5) and (6)),
St Stokes number relative to largest eddy .
St, Stokes number relative to Kolmogorov scale eddy
fs stopping time of particle due to gas drag Vp(t) = ts_l / exp(—(t — t/)/ts) Vgt dt', (2)
Iy overturn time of eddy with wavenumbér 0
17 overturn time of largest eddy . . )
t overturn time of Kolmogorov scale eddy where Vy(t') represents the fluctuating gas velocity history
Vg gas turbulent velocity (large eddy) along a particle trajectory (formally unknown at this point).
Vo particle random velocity in inertial space They proceed by approximatirig(:’) as an integral over all
Vog relative velocity between particles and gas (independently acting) spatial frequenciewith eddy time
Vop relative velocity between particles scalesy, and approximate the contributions as coming from
o nebula viscosity parameteRe= acH /v two classes of eddies: “class 1" eddies, with overturn times
€ dissipation of turbulent kinetic energy long enoughg; > s) that particles are always in equilibrium

Kolmogorov scale

_ o within them and are primarily just advected by their (tempo-
molecular kinematic viscosity

rally fluctuating) motions, and “class 3” eddies with overturn

vr turbulent kinematic viscosity i t hort for th ticle t ¢ ilib
® eddy temporal frequency imes too shor # < ts) for the particle to come to equilib-
og gas mass density rium as it passes through them. Intermediate, or what might

be “class 2,” eddies are not treated separately but are simply
absorbed into the classes on either side. Different simplifica-
tions are allowed for each class. The boundary between eddy
1.3. Previous work classes 1 and 3 i&*, wheret, = ts. VIJMR show that the
class 3 (small, fast) eddies are negligible for velocity com-
ponentsV, and Vpg but dominate the contributions ).
We will make use of these results in the following.

VIMR first obtain the productVp(1)Vp(1)) = (V)

We briefly review and simplify the notation of VJMR and
MMV. VIMR assumed a fully developed inertial range of

turbulent kinetic energ, extending from some largest, or by integrating backward over two separate time histories.

integral, scald = L to zero for the smallest scale. MMV Ty introduce the gas velocity autocorrelation function
also adopted the Kolmogorov energy spectrum (as shall We)(ACF) for gas velocities in their Eq. (16)R(z,'; k) =

but correctly pointed out that turbulence ceases for scales(E(k)/anz) exp(—|t — '|/1). While they do not empha-
smaller than the Kolmogorov or inner scdle= . Espe- size the distinction, the ACF to be used in this way is
cially for small particles in the chondrule- and CAl-size properly Lagrangian, i.e., that determinaihing a particle
range, MMV point out that this has important implica- trajectory(Batchelor, 1948; Hinze, 1975; Squires and Eaton,
tions for Vp and Vpp, we will show here that the implica-  1990; Elghobashi, 1991), which is a functioreein general.
tions are important foVpg as well. Following VIMR, we However, forSt; < 1, and at this stage of our knowledge,

work in the spatial frequency regime, whet€)=1/I* this dependence is weak and the distinction is not significant
and E (k) = Er(k/kr)~>? for the Kolmogorov spectrum.  (cf. Squires, 1990; Squires and Eaton, 1991).

[Note that ourE (k) is a true energy and is half of VIMR’s Subsequently, MMV suggested the more general, even if
P(k).] Then the velocity characterizing wavenumliers ad hoc functional form

v(k) = (2k E (k))? and the eddy time scale for wavenum- Con

ber k (the energy exchange time scale of VIMR Eq. (17)) R(t.1': k) = E®) <1+ It —t |> e l=r'l/n 3)

is 1(k) = 1/ (kv(k)) = 11 (k/kr)~%/3. As did MMV, we as- 2 k? Tk

sumeE (k) = 0 for k > k, (no turbulent energy at scales with n = 0 or 1. As with VIMR, the lack ofs dependence
smaller than the Kolmogorov scale). The mean square turbu-makes this an Eulerian ACF. They note that the 1 case
lent (fluctuating) gas velocity igg; thus the typical turbulent  has more plausible physical behavior (zero slope) near
kinetic energy per unit gas masswg/z, providing the nor- than then = 0 (pure exponential) form assumed by VIMR.
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The zero-slope behavior &z, ¢'; k) arises because the time S ' T
scales and spatial scales of realistic turbulence do not ex- 1
tend to zero, but have lower limits (the Kolmogorov time 08 —_ MMV: eqn. 5 n—0 ]
and length scales). In the next section, we present new re- vy e MMV: eqn. 5 n=1 :
sults of two different kinds which validate the preference for K o pduires & faten (1990) : Fig.177
n=1. 0.6 ~‘\ Re = 427 —
s ]
2. New results 04— |\ -
2.1. The form of the autocorrelation function and I |
the value of 0.2 - .
The selection of = (0, 1) determines the form of the gas F | \:___::;_:1 ..... S .
velocity autocorrelation functioR(z, t'; k). Squires (1990) O 05 T s s a5
and Squires and Eaton (1991) measured this function di- (t-t)/t,

rectly in direct numerical simulations of turbulence, by fol- ation function f ocities alond the trai ]
|OW|ng gas mOtlonS along the trajectorles Of a number Of Flg 1. Autocorrelation function for gas velocities along the trajectory o

a St; = 1 particle, as computed directly from our simulations (symbols,
partlcles with differenBt.. We have now done the same, us- for Re= 107 and 427) and from the simulations of Squires (1990; solid

ing our own three-dimensional (3D) numerical simulations Jine), compared with alternate theoretical approximations using: teed

(described in Hogan et al., 1999). The MMV AG¥t, ¢, k) (dashed) and = 1 (dotted) models of MMV. The = 1 model is the better
(Eq. (3)) must be integrated over all ZBspace to obtain the ciioice because it displaymth the zero slop_e at zero delay'and th_e same
(normalized) temporal form width as the observed autocorrelation function (discussed in Section 2.1).
1 7 could be stretched horizontally by applying some arbitrary
R(t,1") = 72 / R(t.t' k)4mk* dk. scale factor to the eddy time, this would be physically un-
9% justified and moreover would fail to reproduce the zero-slope

For a general turbulent energy spectrum the energy-and-b?ha\’i,orat zero time delay. This has important implications,
velocity-bearing length scale = 1/k;) must be calculated primarily for Vpg and Vpp. In Section 3, we again use our

as a weighted mean (e.g., Vincent and Meneguzzi, 1991) us-oWn ?fD numericgl palculations to directly compaigand .
ing Vpg With the predictions of the two alternate autocorrelation

functions, and we again reach the same conclusion.

o
in /E— //E(k) dk 2.2. Closed-form solutions for particle velocities in
ke 9 k Kolmogorov turbulence
(0.¢]
_ 2 / E(k) dk 2.2.1. Vp: Particle random velocities relative to inertial
Vg ko space
0 After some algebra, VIMR derive an expression (their
For an inertial rangek; is merely the smallest (i.e., ko Eq. (18)) for the mean-square particle fluctuating velocity

of VIMR), but for our noninertial range spectrum, the ac- V), of which we need only the large, slow (class 1) eddy con-
tual numerical result must be used. In Fig. 1 we compare tribution since the small eddy contribution is negligible for
the MMV velocity autocorrelation function for = 0 and 1 St, = 1 particles (we will henceforth drop tHe notation on
with ACFs derived from numerical simulations described Vjp, Vg, Vpg, andVpp and will merely recall that all are statis-
by Squires (1990) and Hogan et al. (1999). The simula- tical expectation values based on extensive temporal or spa-
tion ACFs, being along actual particle trajectories, are La- tial averaging). Because of our emphasis on particles with
grangian, and as mentioned in Section 1.3, the MMV ACFs St, = 1, we also replace the upper limit of VIMR’s class 1
are Eulerian. The small differences seen in the knee of theintegral ¢*) with the Kolmogorov scalé,. This simplifi-
curve are consistent with the difference between Lagrangiancation is, in fact, actually fairly good over the entire range
and Eulerian ACFs, as observed in simulations (Squires, of St « 1, precisely becausthe contribution of eddies on
1990; Squires and Eaton, 1991) and as predicted by the-scales smaller thaki* (the class 3 eddies) is negligible. That
ory (Nakao, 1997): The Lagrangian is always less than the is, the upper limit can be extended frarhto k, in general
Eulerian, even for a fluid. for mathematical simplicity without incurring significant er-
Then = 1 model is clearly a better fit to the simulation ror. Mathematically, the upper limit could even be extended
results, even without making allowances for these possibleto infinity (e.g., Volk et al., 1980), but the important role of
deviations. While the pure exponential case (dashed line)the Reynolds number and of the Kolmogorov scale is then
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lost. Thus,
kU
Ik
vix~2 | Ek dk. 4
~2 [ Ew (4)
kr

Similarly, the basic equation (18) chrp2 of VIMR, general-
ized by MMV (their Eg. (6)) can be simplified to

ey

) ts n+1 g
e e () )a

kr
k

i 1 n+1
:Z/E(k)<1_(1+tk/ts> )dk

L
for the particle size regime of interest here. As did VIMR,
MMV note that the second integral of their Eq. (6)—the
class 3 eddy contribution—is negligible for small particles,

(5)

so Eq. (5) here retains only the first integral of their Eq. (6).

We have again simplified the upper limit of integration in
the remaining integral for the nomin&k, ~ 1 case, using
k* ~ k, > k. We validate this by comparing our results
with those of MMV (Section 2.3).

The result foer2 was plotted, but not stated explicitly,
by VIMR and MMV (Fig. 1 in both papers) and explicitly
derived by Cuzzi et al. (1993, effectively far= 0; Ap-
pendix B): VZ = VZ/(1+ Si.). It is simple to see why
VZ ~ V¢ in the limit St « 1 (and certainly forSt, ~ 1,
whereSt, ~ Re 1/2) sincers << 1 in Egs. (4) and (5) for
nearly allk and overwhelmingly alE (k). This limit is ap-

propriate for chondrule- and CAl-sized particles even in the

presence of their small vertical settling velocity—they dif-

fuse nearly as well as a gas molecule and do not “settle to the

midplane” in even a very weakly turbulent nebula (Dubrulle

131

For thisn = 0 case treated by VIMR, it can be easily
verified using Egs. (4) and (6) that
k'l
2 2_ —_y2
Vgt Vp _Z/E(k)dk_vg.
kr
However, this useful result is true, independent oft may
also be obtained by Fourier transform solution of the forcing
equations in temporal frequency) space, where the en-
ergy spectrum of gas velocity fluctuatiolg(w), particle

velocity fluctuationsEp(w), and relative velocity fluctua-
tions Epg(w) are related by

(7)

Ep(0) = Eg(w)/(1+20?) and
Epg(w) = t20? Ep(w). (8)

This approach can be traced to Csanady (1963); it is also de-
scribed by Hinze (1975, Chapter 5), Meek and Jones (1973),
and Squires (1990, Sections 4.2 and 4.5.1). Epsolution

was also derived in this way by Cuzzi et al. (1993, Appen-
dix B). It is also clear then thakpg(w) + Ep(w) = Eg(w),
essentially the same result as Eq. (7) here. Finally, we have
directly verified Eq. (7) in our numerical simulations.

Using this general relationship, we can extend the results
of MMV to obtain szg for their more generalized gas veloc-
ity autocorrelation functions (they only present results for
V7). Thatis, using Egs. (1) and (5), we get

ky

2 2 2 s\
Vpg Vg Vp / (k)<t5+ lk) dk
kr
kn 1 n+1
=2 | Ek dk 9
/ ( )(1+fk/ts) ©

kr

etal., 1995; Cuzzi et al., 1996). However, even for small par- We Will use Egs. (5) and (9), with assumed inertial range

ticles, V2 and V¢ are notexactlyequal, resulting in a small,
but very important, relative energy of motio{;fg, giving the

velocity with which particles move through the gas and en-
counter tiny (micrometer-sized) dust grains. We discuss this

guantity next.

2.2.2. Vpg: Particle velocities relative to the gas

expressions forE (k), to derive analytical expressions for
Vp and Vpg of hypothetically “chondrule-like” (i.e.$t, ~ 1)
particles as functions of their size and the turbulent Reynolds
number.

2.2.3. Vpp: Relative velocities between particles of similar
sizes
Small particles of similar sizes are affected coherently by

The average relative velocity magnitude between a par- most eddies so move nearly coherently and can have very

ticle and the turbulent gas i&pg. VIMR make use only

small relative velocities Vpp even if their inertial space ve-

of the spatial frequency components of this quantity, which |ocities V, are comparable t¥g. Expressions fovp, (Volk

they refer to asVie(k) (their Eq. (15)). Practically speak-

et al., 1980, Appendix C and Eg. (19); Markiewicz et al.,

ing, however, a particle will instantaneously sense all eddy 1991, Egs. (7) and (8)) are more cumbersome thawgar

contributions as on&pg; we obtain this by merely integrat-
ing VIMR Egq. (15) ovek. If we consider only the part of
the expression relevant f@t, ~ 1 (that fork* > k), ne-
glect any systematic velocity, and again tét~ k, > kr,
the second integral vanishes and we obtain

ey

Is
V2 ~2 | Ek dk.
Pg / ( )<tk+ts>

kL

(6)

Vpg, but they respond nicely to certain simplifying assump-
tions. The full expression foVp,, for two particles of equal
size is (changing notation slightly from MMV Eg. (9), and
allowing for a finite Kolmogorov scale)

ky

2 _ _ 5 nish G0
Vpp—4/E(k)<1 ts+tk>[g(x)+ P }dk,
k* (10)
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whereg(x) =tarnm1(x)/x andh(x) = 1/(1+ x?). The pa-

rametery of VIMR and MMV is small in our regime of
interest,

_ VeOtskty — Viel(k)ts _ Vrel(k)

ts+ 1k v(k)(ts + 1) 2v(k)

(11)
since in the very limited range éfover which the integral is
dones~ 1.2 In fact y « 1 over most of the integral where

ts K ty, SO the functiong(x) andh(x) are~ 1 or perhaps
as small as a fraction of order unity; thus

k

) < s n+1
et f i (2 ) a
k*
cef e (o) e
_k 144 /1ts ’

The integrand is identical to that fét2, but the integral has

(12)

a different prefactor, as well as different limits, which make

it clear that only the eddies faster thgican perturb identical
particles into having incoherent relative velocities.

2.2.4. Inertial range (Kolmogorov) turbulence; scaling
relations

The general Kolmogorov theory of fully developed tur-
bulence provides a convenient and widely applicable mathe-
matical representation of the turbulent energy spectrum. We

follow VIMR and MMV in applying it, obtaining handy
closed-form solutions foVp, Vpg, andVpp.
Recall that for the gas,
e =10 /v(k) = (L Vo) (k/ k1) 2% = 1.k / k) %°
(13)

(Section 1.3; Cuzzi et al., 2001). In Eg. (13) we have made

the usual identification oV with the largest scale eddy.
For the particles,

Is

= =St = (ks/kr)"? (14)
L

and
;_: = (k/ke)** = ff(k//q)z/s =St (k/kr)¥>. (15)

Note that if we restrict our attention to particles wily =
ts/ty ~ 1, then their Stokes number referred to theegral
scale automatically becomes
St =15/t =1,/ 11, = (ky/ k1) "2 = (RE/4) 723
=Re/2, (16)

2 |n the equation fory, the mathematical generalization &hg by
VIMR and MMV to its kth componentsV,q (k) momentarily reappears.

The last substitution o,/ k) = R4, whereRe= LVgy/v

is the flow Reynolds number, with being the molecular
kinematic viscosity, is a direct consequence of the defini-
tions of the Kolmogorov scale, the energy dissipation rate,
and the Reynolds number (Tennekes and Lumley, 1972).
This relation can be obtained without any reference at all
to the Kolmogorov spectrum but by merely using scaling ar-
guments relating to, andt,,.3 Reis related to astrophysical
“a”-models of the protoplanetary nebula IRe= acH /v
with ¢ = sound speed an# = nebula vertical scale height
(Cuzzietal., 2001).

2.2.5. Final expressions fdrpg and Vpp (and Vp)
Substituting the scaling relations in the previous section
gives for Eq. (9)

ky

2 1 I’l+1
Voo = 2/ E(k)<1+ tk/ts> dk

193
k”

St n+1
:2/E(k)(W> dk.  (17)

kr

We use the normalization (Eqg. (1)) to write

2 -5/3
B =28 (L)
3k \ k.

and we change integration variablexte= k/ k. , leaving

Re¥/4

StL n+1 B
f <7StL+x—2/3) x> Rdx,  (18)
1

where in the upper limit we have substitutéd/k; =
R4 from the scaling relations. Closed-form solutions for
Eqg. (18) can be obtained fer = O or 1. For example, for
n = 1 the result of the integral is

2
2_2V9
Pg— 3

1
V2 — 2 SitL
Y 914 st x2/3 Re/4

SE(ReV/? - 1)
=VZ . 19
’ [(StL +1)(St. Re/2 + 1>} 19)
Forn = 0 the result of the integral is

=i sun(“gmey 7)) (20)

These results make it quite easy to predict both the mag-
nitude and thesSt, dependence oVpg for arbitrary nebula
turbulent intensity. We do not preseljf separately, because
itis easily obtained using = V¢ — V& (Eq. (9)).

3 Let the energy dissipation rate beThene = VZ/1, = V§/L, where
t1,, the energy exchange time, is defined in Section 1.3. 1‘),Ise(u/e)1/2

However, it is true in general, at any spatial frequency, that the particle—gas andn = (v3/e)1/4 (e.g., Tennekes and Lumley, 1972, Chapter 1). Solving

relative velocity is less than, or at most equal to, the gas velocity itself.

givesty /1, = Ré/2 andn/L = Re¥/4.
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We solve Eq. (12) foWyp in a similar fashion to the solu- Upon comparing our original analytical results (Egs. (19)
tion for Vpg to obtain, forn = 1. and (22)) with our full numerical model and the MMV re-
kn/kL sults, we found some §mal| gquantitative discrepancie.s at the
2 4Vg2 2St x~7/3 4 x93 order unity level, as might be expected. The responsible ap-
Vop= 3 / (Stz t 2Sy x-2/3 ~|—x‘4/3> dx. proximations were easily identified. First, we approximated
k(ts)/ kL L (21) the boundary between class 1 and class 3 eddies by

. L _ ped/s t(k*), rather than the more complete Eq. (9) of VIMR and
As before, the upper integration limitks/k, = R€ ._I;;)zr Eqg. (4) of MMV, which gives the relevant eddy frequency

the lower limit, k*/k, = k(1s)/ ki = (ts/11)7%/% = SL™" in the moving frame of the particle and involvése(k).
fromlth_e scallng relations. The closed-form analytic solution Comparison of the two criteria revealed that, to a very good

of this integral is: approximation, the criterions = 7 (k*) gives a value ok*
—2/3 sg2 that is too large by a factor close to 2 (Fig. 3). So, after this
szp = 2V92[723} “calibration,” we merely decrease the lower limit of integra-
1+ Stx?/3 [peys tion in our Eqg. (22) by a factor of 2. Second, even after this

_ ZVZ[S_EL B 1 } 22) correction, our values ofjpp are about 20% high. This is
91 2 sSyRe+Re/2[ easily ascribed to our approximation thaly ) andi(x) are

Then = 0 form of the solution is somewhat less useful, and €dual to unity throughout the entire rangekoin fact, they

we note it without expanding it as it will not be used further; 7€ tens of percent smaller than unity over some part of this
range, depending on the valuelif . Empirically, this is cor-

1+ Sth2/3> 1 Tem (23) rected by multiplying our analytical expression gy, by a

szp: ZVQZ[StL |n<T T x2/3 52 23 constant factor of 0.8. With these two simple adjustments,
L each correcting a known oversimplification, our analytical
2.3. Detailed comparisons with the models of expression forVpp achieves very good agreement with the
Markiewicz et al. MMV results, and with our own full numerical model, over
the relevant range @&t < 0.1 or so. There appears to be no
2.3.1. Detailed MMV model reason to make such refinements to our analytical expression

In addition to developing the analytical expressions dis- for Vpg (Ed. (19)), because our approximations are better jus-
cussed and applied in this paper, we also developed a delified and the agreement with MMV acceptable.
tailed numerical model following the prescriptions of MMV Overall, the approximations succeed better than might
exactly (but with a generalized turbulent energy spectrum). be expected. While our assumptions are only demonstra-
The full model is valid for allSt; . This was needed both to  bly valid for St « 1, the results are demonstrably valid for
evaluate their theoretical approach in the context of our nu- St. < 0.1.
merical simulations of turbulence (Section 3), which have a
non-Kolmogorov spectrum and low Reynolds number com- 2.3.2. Corrected equations based on comparison
pared to nebula applications, and to assess the validity of ourwith MMV
analytical approximations. The numerical model of MMy~ With insights gained from comparison of our numerical
is no |0nger in active use (W Markiewicz, persona| com- and analytical mOdelS, we have made two small adjustments
munication, 2002), so we digitized thelf,, results (their 0 EQ. (22) for Vpp which correct for two of our approx-
Fig. 5) to facilitate comparisons. As seen in Fig. 2, our full imations. Equation (22) is multiplied by a factor of 0.8,
numerical model fol/, (solid curves) agrees very well with  and the upper integration IimiS(tZ3/2) is divided by 2, so
their results forVpp (long dashed curves). In Fig. 2 we also the first term in the final expression changes frSfn/2 to
show our results fokpg, not presented by VIMR or MMV, St /1.03~ St;.. The approximations entering into our ex-
as obtained by integrating MMV Eq. (4) over all spatial fre- pression forVpg are better, so no correction is applied. The
quencies. Note that we, and MMV, both use the appropriate final equation forVpp is then
form of R(z,1'; k) (i.e., that for the correct choice af Sec- 1
tion 1.3) for these calculations. Vi =16V [StL - 72:| (24)

The most striking feature of the results, first noted by St.Re+ Re"
MMV, is that Vpp very quickly falls to zero for similar sized ~ The results of Egs. (19) and (24) (the preferred and adjusted
particles withSt, < 1 (i.e., St < Re"Y/2, as shown in the  n = 1 forms), normalized by, are shown in Fig. 4 for the
scaling relations of Section 2.2.4) because there is no moresame three values &eas in MMV and in close-up formin
energy in faster eddies to provide relative velocities to such Fig. 5.
particles. This does not happen ¥y, because eddies on As shown by MMV (their Fig. 2), and as seen previously
all scales contribute. Also note thg and Vpp decrease for  in our Fig. 2, the falloff ofVy is extremely steep fogt;, < 1
largeparticles St; > 1), as fewer eddies can effectively cou- (i.e., Sty < Re /2 as shown in the scaling relations of Sec-
ple to particles with such long stopping times. Naturéiy tion 2.2.4) because there is no more energy in faster eddies
simply approachegj for these large particles. to provide relative velocities to such particles.



134 J.N. Cuzzi, R.C. Hogan / Icarus 164 (2003) 127-138
T T T 1T T T T T T T T T T T T T T 1T T T TTTTT
100 - ————————— —_——— — —
- '\' "".. -
:>b0
N
> 1071 |- ]
=" n ]
\Q | |
> - 1
> i |
\Q N i
=
10-% — —
| | IIIIII| | IIIIII| | | IIIIII| | | IIIIII| | | IIIIII| | | IIIIII| | [N
10-° 104 10-3 10-2 10-1 100 10! 102
St, = t/t,

Fig. 2. Comparison of our numerical version of the full MMV models fioe O

(light curves) andk = 1 (heavy curves) with digitized results fofp from

MMV (dashed curves, their Fig. 5, for = 1). Three differeniReare shown: (a) 14 (b) 1¢/, and (c) 18. The dash—dot curves are fop(n = 1), which
has the same shape for all thige Vpg is shown in the two sets of dotted curves drjgh in the two sets of solid curves. Note that the= 0 values 0fVpg
(light dotted curves) are considerably (3—4 times) higher than the preferel values (heavy dotted curves), and Big dependence oVpg, for n =0,
never gets much steeper thﬁﬁ-f’, whereas for = 1 a linear dependence is seen & < Re1/2 (St; $1). Asin Figs. 4 and 5, vertical tick marks indicate

St, =Re /2 for the three values dRe

2.3.3. Simplification of analytically determined velocity
expressions

Equations (19) and (24)—for the preferred= 1 case—
are readily simplified in different limits of interest. It is sim-
ply shown by retaining leading terms that Eq. (19) #¢g
results in two separate regimesg oc St’> for Re™V/2 <
St < 1 andVpg o« St ReY4 for S, < Re"/2. This is con-
firmed by inspection of Figs. 2 and 4. While Eq. (19) is
not formally valid for St > 1, inspection reveals that it

St, =1, or S, = Re /2, Eq. (19) reduces directly to
Re /4

. 1/4

where we have substituteidy = ca/2 (Cuzzi et al., 2001).
This Redependence, which also applies fiif < 1 in gen-
eral, quite naturally explains a result we obtained empirically
from our numerical models over a rangeRémuch smaller
than nebula values, namely thiésg/ Vy o« Re"1/4 (Cuzzi et

does reach the correct limiting value. In the special case ofal., 1998). By contrast, it is similarly shown from Eq. (20)
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Fig. 3. Correction of our approximatiok™ ~ Stzs/2 by a factor of 2 Fig. 4. Vpg(St.) (dotted; Eq. (19)), and/pp(.SFL.) (solid; Eq. (23)), fong
(dash—dot line), which brings it into excellent agreement (in our range of Vvalues of (a) 16, (b) 10', and (c) 16. The digitized results of MMV (their
validity S, < 0.1) with the exact numerical solution fdr*, shown with Fig. 5) for Vpp, for the same three values B are shown by the dashed
essentially overlapping curves fete= 10, 10’, and 18, computed us- lines. OurVpp expression is invalid foy, > 0.1 or so (see text).

ing the full VIMR/MMV expression (solid line)Very close toSt; = 1

our approximation deviates slightly; notice the tiny taiat = 6 x 1073,

k* = 103, which is the Kolmogorov scale féke= 10%. The corresponding 10t
features for higheReare off the plot to the left.

that theSt, dependence ofg for the oldem = 0 case con- e
tinues theSli/2 dependence to arbitrarily smal; . ~

These results are also consistent with arguments in Cuzzi >710_2
et al. (1993, Appendix B; A. Dobrovolskis, personal com- 5"
munication). We can expand and time-average the instanta- _&
neous quantity(Vp — Vg)?) to obtain(VpgVpg) = (VpVp) +
(VgVg) — 2(VpVy). Substituting from Cuzzi et al. (1993,
Eq. (B11)) we find (VpVp) = (VpVg) = (VgVg) /(1 + St),
leading to Vpg = (St /(1 + St.))Y/2Vg, which reaches the
same limits as Eq. (19xceptfor particles withs < 1,,, or
St, < 1, because the integral in its derivation (Cuzzi et al.,
1993, Eqg. (B11)) extends to infinite eddy frequency. 104
Thus, unless; < 1, (St, < ReY/2), the particle—gas rela-
tive velocity in turbulence is generally proportional St

for small St;. The steeper dependence Yﬁg on St and Fig. 5. A close-up plot oﬁ/pg (d.otted),Vpp (solid), an;j the digitized MMV
results forVpp (dashed,; their Fig. 5), all for thiee= 10’ case. The dash—dot

St7 IS. reStTICted (in turbulence) to Par“c'es WISE? <L line has slope A2. The vertical short dashed line indicatet; = 1, where
Thatis, evidence for a more nearly linear dependendg@f sy = Re1/2; here, Vpg Q7.

onr, if the environment was turbulent, would imply that the
particles in question wert, < 1 particles. This new result

derives directly from the use of the= 1 gas velocity auto- Finally, using Eq. (24) foVyp, we get
correlation function. The primary qualitative change is in the
particle size dependence &g for particles withSt, < 1. Vop(Sty = 1) = VO.8VgRe Y4 = 1.26V,yg (26)

We address the significance of this in more detail in a forth-
coming paper (Cuzzi, in preparation). where we used Eq. (25) fofyg.
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3. Comparison with numerical results

In this section we compare numerical results from our
full 3D Lagrangian particle—gas model (Hogan et al., 1999)
with full numerical calculations using our implementation
of MMV (Section 2.3). We present particle velocities rela-
tive to the computational box/f) and relative to the local
fluid velocity (Vpg), as obtained from our simulations. These
velocities are defined as RMS spatial averages over all par-
ticles in a single snapshot, &= (((V, — (Vi))?) + ((Vy —
(V)2 + ((V, — (V.)2)Y/2, whereV represent¥, or Vpg
at the location of each particle, and is the averaging op-
erator(...) = vazpl(...)/Np, where Ny is the number of
particles in a single snapshot. Of cour¢g) is very close
to zero for both these quantities since there is no mean flow
in our simulations.

This spatial averaging approach is equivalent to the tem-
poral averaging implicit in the MMV model, because of the
ergodic principle that equates temporal and spatial averag-
ing under suitable conditions. In our case, the conditions are
satisfied because our integral length scales small com-
pared to the spatial period of the computational domain, for
all Re

The case ofVpp is more complicated, as the results de-
pend on the proximity region chosen for “neighboring” par-
ticles. For the most useful comparisons with the predic-
tions of MMV and VJMR, and with the expected uses of
this quantity in mind, the region over which particle neigh-

bors are selected should be as small as possible—less thap

n certainly—and here we run into sampling errors. Per-
haps most important, the deviation of our 3D model energy
spectrum from a Kolmogorov spectrum is significant (e.g.,
Squires and Eaton, 1990), aff, is much more sensitive
to the details of the high-spatial-frequency end of the en-
ergy spectrum than eithét, or Vpg. Since the main purpose
of these calculations is to verify numerically the preference
for then = 1 autocorrelation function in an independent way
from the direct comparison shown in Fig. 1, and because this
case is already well made by thg andVpg plots, we present
no comparisons fovpp.

Figures 6 and 7 show that the= 1 autocorrelation func-
tion provides a much better fit to botfy and Vg than the
n = 0 version. ForVpg, the fits of the MMV theory to our
simulations are less perfect than figg. We can see several
possible explanations for this. For instance, the mathemat-
ically simple form adopted for thea = 1 autocorrelation
function is not a perfect fit to the actual numerically deter-
mined one (Fig. 1), by about the correct fractional amount.
Also, we have emphasized that the correct velocity autocor-
relation function to use is thatlong a particle trajectory
(Meek and Jones, 1973), and this function is actually some-
what size dependent even over the rage~ 1 (see, e.g.,
Squires, 1990, Fig. 4-23). Finally, because of the deviation of
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Vpg to be more sensitive to these small deviations thign
(compare Figs. 6 and 7). In spite of the small deviations
in Vpg, the combination of the direct comparisons of the
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Fig. 6.V, vs St;, obtained from our direct simulations (symbols) compared
with MMV predictions for models: = 0 (solid line) and: = 1 (dotted line).

All velocities have been normalized by the RMS fluid velodify. Results
are essentiallReindependent. Th&t, values for each point are defined
relative to a large eddy time based onanstantlarge eddy time; , which

is essentially the correlation time of Fig. 1. The= 1 MMV prediction is
learly a better fit to the numerically simulated velocities.
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Fig. 7. Vpg obtained from our direct simulations (symbols), compared with
predictions of the MMV models witlh = 0 (solid lines) and: = 1 (dotted

lines) vsSt; . All curves have been normalized by the RMS fluid velocity
Vg. Here there is a smaRe dependence, as seen in Fig. 2, for both the

our turbulent kir!e_ti'c energy spec?trum from an inertial range, numerical calculations and theoretical predictions. The small deviation be-
some of the definitions of eddy times used in the MMV the- tween the: = 1 calculations and the MMV theory is discussed in Section 3,

ory might be inappropriate. It would not be surprising for but here agairm =1 is much better than = 0.
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autocorrelation functions themselves (Fig. 1) and the com- Batchelor, G.K., 1948. Diffusion in a field of homogeneous turbulence II;
parison of the velocities derived using them (Figs. 6 and 7) the relative motion of particles. Proc. Cambridge Philos. Soc. 48, 345—

makes it clear that the = 1 autocorrelation function is the 362. . . i
best choice Boss, A.P., 1996. A concise guide to chondrule formation models. In:

Hewins, R., Jones, R., Scott, E.R.D. (Eds.), Chondrules and the Proto-

planetary Disk. Cambridge Univ. Press, Cambridge, UK, pp. 257-264.
Brearley, A.J., Jones, R.H., 1998. Chondritic meteorites. Chapter 3. In:

Planetary Materials. In: Reviews in Mineralogy, Vol. 36, p. 191.

. . Connolly , H.C., Love, S.G., 1998. The formation of chondrules: petrologic
We have presented theoretical and numerical resultS tests of the shock wave model. Science 280, 62—67.

which describe the turbulence-driven velocities of parti- Csanady, G.T., 1963. Turbulent diffusion of heavy particles in the at-
cles in theSt, < 1 size regime which might characterize mosphere. J. Atmos. Sci. 14, 171-194.
chondrules and similar sized particles. The problem is fun- C“ZCZi' J.tl_\l., Da‘(’jisv S_-St-;bD‘t’_b’O"?'s'fs' f-R-120|03_- B'O‘_"’ingti”;hf"vti”d:t”-

. . . reation ana redistripution or refractory Inclusions In a turbulent proto-
damentally _nonhn_ear becauge the .perturbat|ons ona par'gcle planetary nebula. In: Lunar Planet, s(:i)./ Cont.. pp. 34-35, P
depend on Its trajectory, which is in turn determined by Its Cuzzi, J.N., Dobrovolskis, A.R., Champney, J.M., 1993. Particle-gas dy-
perturbed velocity. Overall, we numerically verify, using full namics near the midplane of a protoplanetary nebula. Icarus 106, 102—
3D turbulent calculations with particles, the general solution 134
approach of Volk et al. (1980) as modified by Markiewicz et Cuzzi, J.N., Dobrovolski;, AR., Hogan_, R.C., 1996. Turbulence, chon-
al. (1991). That is to say, we validate their approach to cir- drules, and planetesimals. In: Hewins, R., Jones, R., Scott, E.R.D.

4. Summary and conclusions

cumventing the “essential nonlinearity” of the problem (cf.
Meek and Jones, 1973).
More specifically, we verify in two different ways the in-

(Eds.), Chondrules and the Protoplanetary Disk. Cambridge Univ. Press,
Cambridge, UK, pp. 35—44.

Cuzzi, J.N., Hogan, R.C., Paque, J.M., Dobrovolskis, A.R., 1998. Chon-
drule rimming by sweepup of dust in the protoplanetary nebula: con-

straints on primary accretion. In: Lunar Planet. Sci. Conf., p. 29.

function—at least along the trajectoriesStf < 1 particles. 422 J:N., Hogan, R.C., Paque, J.M., Dobrovolskis, AR., 2001. Size-
selective concentration of chondrules and other small particles in proto-

The MMV n=1 ve!ocny autocorrel‘?‘tlon function leads t(? planetary nebula turbulence. Astrophys. J. 546, 496-508.
a particle—gas relative velocity function that approaches lin- puprulle, B., Morfill, G.E., Sterzik, M., 1995. The dust sub-disk in the pro-
ear dependence on particle size for particles inShex 1 toplanetary nebula. Icarus 114, 237—246.
regime and becomes and remains linear for arbitrarily small Elghobashi, S.E., 1991. Parti_cle-laden turbulent flows: direct simulation and
sizes. This is quite a different result than predicted by the _ Cclosure models. Appl. Sci. Res. 48, 301-314.
iginal VIMR (n _ 0) expressions Grossman, J., 1989. Formation of chondrules. In: Kerridge, J.F., Matthews,
0r|g|'na - ” P ’ . M.S. (Eds.), Meteorites and the Early Solar System. Univ. of Arizona
Finally, we derive simple, closed-form, analytic expres- Press, Tucson, pp. 680—696.
sions forVp, Vpg, and Vyp (the latter, for comparable size  Grossman, J., Rubin, A.E., Nagahara, H., King, E.A., 1989. Properties of
particles only) for arbitrary levels of nebula intensity, as chondrules. In: Kerridge, J.F., Matthews, M.S. (Eds.), Meteorites and
characterized by the flow Reynolds numiie or its cor- the Early Solar System. Univ. of Arizona Press, Tucson, pp. 619-659.
sy . . . . Hinze, J.0., 1975. Turbulence, 2nd edition. McGraw—Hill, New York.
responding &.” One immediate result of interest is that the : ; . .

. . . . Hogan, R.C., Cuzzi, J.N., Dobrovolskis, A.R., 1999. Scaling properties of
veloglty of Small particles relative to a tL'erUIem gfas IS' ap- particle density fields formed in turbulent flows. Phys. Rev. E 60, 1674—
proximately linearly dependent on particle stopping time, 1680.
itself linearly proportional to particle radius in this regime. Jones, RH,, Lee, T., Connolly Jr,, H.C., Love, S.G., Shang, H., 2000. For-
These expressions may be of broader general use.

tuitive preference of MMV for a gas velocity autocorrelation

mation of chondrules and CAls: theory vs. observation. In: Mannings,
V., Boss, A.P., Russell, S.S. (Eds.), Protostars and Planets IV. Univ. of
Arizona Press, Tucson, p. 927.
Markiewicz, W.J., Mizuno, H., Vélk, H.-J., 1991. Turbulence-induced rela-
tive velocity between two grains. Astron. Astrophys. 242, 286—289.
Meek, C.C., Jones, B.G., 1973. Studies of the behavior of heavy particles
in a turbulent fluid flow. J. Atmos. Sci. 30, 239-244.
Metzler, K., Bischoff, A., 1996. Constraints on chondrite agglomeration
from fine-grained chondrule rims. In: Hewins, R., Jones, R., Scott,
E.R.D. (Eds.), Chondrules and the Protoplanetary Disk. Cambridge
Univ. Press, Cambridge, UK.
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