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Blowing in the wind
I. Velocities of chondrule-sized particles
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Abstract

Small but macroscopic particles—chondrules, higher temperature mineral inclusions, metal grains, and their like—dominate the
primitive meteorites. The properties of these constituents, and their relationship to the fine dust grains which surround them, su
they led an extended existence in a gaseous protoplanetary nebula prior to their incorporation into their parent primitive bodies. In
we explore in some detail the velocities acquired by such particles in a turbulent nebula. We treat velocities in inertial space (r
diffusion), velocities relative to the gas and entrained microscopic dust (relevant to accretion of dust rims), and velocities relativ
other (relevant to collisions). We extend previous work by presenting explicit, closed-form solutions for the magnitude and size de
of these velocities in this important particle size regime, and we compare these expressions with new numerical calculations. The
and size dependence of these velocities have immediate applications to chondrule and CAI rimming by fine dust and to their diffus
nebula, which we explore separately.
 2003 Elsevier Inc. All rights reserved.
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1. Background

1.1. Introduction

The fabric of the most primitive meteorites undoubte
contains many clues as to their origin. While most chondr
are samples of surfaces that have been well worked
by impacts and stirring (“regolith breccias”), the dominan
of chondrules and like-sized objects remains clear. Ho
came about that most chondrite parent bodies are so d
nated by particles with such a well-defined range of phys
chemical, and petrographic properties remains one of the
puzzles of meteoritics. Since there are relatively few ex
ples of anything larger than 0.1- to 10-mm size particle
most primitive planetesimals, the way such particles inte
with the gaseous nebula is of prime importance.

Fe–Mg–Si–O mineral chondrules, which solidified fro
a melt, constitute 30–80% of primitive meteorites. There
a number of extant hypotheses for the formation of the ch

* Corresponding author.
E-mail address:cuzzi@cosmic.arc.nasa.gov (J.N. Cuzzi).
0019-1035/03/$ – see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0019-1035(03)00104-0
-

drules. Most workers in the field believe that chondrules
formed by either localized or nebula scale energetic ev
operating on freely floating precursors of comparable m
at some location or locations in the protoplanetary neb
However, some still maintain they are made in or on pri
tive bodies, or in collisions between them. In a hybrid s
nario, some suggest they are formed in shock waves ge
ated by already-formed planetesimals and thus that the
a secondary phenomenon to primary accretion of plane
mals. See, e.g., Grossman (1989), Grossman et al. (1
Boss (1996), Connolly and Love (1998), and Jones e
(2000) for reviews of hypotheses on this long-controver
and perennially fascinating subject.

Another meteorite constituent of great interest is the m
eral grains called Ca–Al-rich refractory inclusions (CAIs)
so-called because their constituent minerals condense
of nebula gas at a much higher temperature than do c
drules. These objects are widely believed to be direct ne
condensates and have a complex subsequent thermal h
which has some similarities to that of chondrules and so
differences. There is some indication from radioisotope a
that CAIs might be∼ 106 years older than the chondrule
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but this remains slightly controversial. They make up 1–1
of primitive meteorites depending on type, and their size
tribution is broader than that of the chondrules. How th
high-temperature minerals find themselves intimately mi
with lower temperature minerals remains a puzzle.

It remains unresolved at this time whether the nebula
was turbulent or laminar during the chondrule era. In p
vious papers, we have suggested that some of the obs
properties of chondrules themselves—their typical size
size distribution—can be associated with, and easily
plained by, the effects of weak nebula turbulence (Cuzz
al., 1996, 2001). Nevertheless, a consistent end-to-end
nario for formationof primitive bodies in this environmen
which relies on these processes, is not yet in hand. In thi
per, we focus on the velocity evolution of this specific cl
of particles in a weakly turbulent nebula as a step tow
developing a more complete scenario that operates to
duce primitive bodies in a similar way across a variety
environments. The velocity evolution is critical for our u
derstanding of several important aspects of chondrules
chondrites:

(a) the radial distribution and redistribution or transpor
chondrules and/or CAIs, once formed, before their
cumulation into parent bodies;

(b) the presence of fine-grained rims on chondrules, C
and other coarse particles in primitive chondrites (M
zler and Bischoff, 1996; Brearley and Jones, 1998);

(c) collision rates and velocities between chondrule-s
particles.

The main goal of this paper is to provide a theoretical fra
work within which we can better understand millimeter-
centimeter-size particle evolution in general. We accomp
this in Sections 2 (new gas velocity autocorrelation fu
tion and analytical approximations) and 3 (new suppor
numerical calculations). In other papers we apply these
sults to diffusion and dust rimming of meteorite constitue
(Cuzzi et al., 2003; Cuzzi, in preparation).

1.2. Particle velocities in turbulence

Astrophysical modeling of the basic physics of pa
cle behavior in fluid flows, whether laminar or turbule
tends to begin and end with the classic papers by Whi
(1973), Adachi et al. (1976), Weidenschilling (1977, 198
and Völk et al. (1980, henceforth VJMR; also Völk et a
1978), with important recent updates by Markiewicz et
(1991; henceforth MMV). In the fluid dynamics literatur
however, the study of particle motions in fluid flows h
both a long history and a robust ongoing presence. This
tory is nicely summarized by Meek and Jones (1973). M
recent work in the fluids literature is noted in various re
vant places in the following. VJMR first developed a use
formalism for calculating the dispersion velocitiesVp (rel-
ative to inertial space) and collision velocitiesVpp (relative
d

-

-

-

to each other) of particles in a turbulent nebula. They
cumvented the thorny problem of “essential nonlinear
(cf. Meek and Jones, 1973) by translating clever phys
insights into mathematics and adopting a velocity auto
relation function approach, which we discuss in more de
later. While the relative velocity between particles and g
Vpg, serves an important internal role in their solutions, n
ther VJMR nor MMV say much about it. Yet,Vpg is the de-
terminant quantity for accretion of rims of fine dust grains
small, macroscopic objects (Paque and Cuzzi, 1997; C
et al., 1998; Morfill et al., 1998). Our goal in this paper
to quantifyVp, Vpg, andVpp for such particles in a way tha
expresses the formulation of VJMR and MMV in simple, a
alytical, closed-form solutions—allowing deeper insights
be gained into the history of chondrules and like-sized p
cles in the protoplanetary nebula.

In this paper, we determine velocities of all three kind
Vp, Vpg, andVpp—with emphasis on particles having sto
ping timests much less than the large eddy time scale, a
more specifically, comparable to the overturn timetη of the
smaller eddies. Particles in this size regime have beha
more complex than tiny “dust” grains, which are essenti
trapped to the gas flow on all scales. In particular, parti
with ts = tη are subject to “preferential concentration”
large factors in turbulence, and based on some of its ap
ent fingerprints in the meteorite record, we have sugge
a link among this process, chondrules, and primary ac
tion. Specifically, we refer to the fact that thetypical size
and theshape of the size distributionof chondrules are read
ily explained by turbulent concentration (Cuzzi et al., 19
2001). In other papers (Cuzzi et al., 2003; Cuzzi, in prep
tion) we explore the possibility that turbulent diffusion d
to Vp might help us understand the puzzling mix of CA
and chondrules in the same meteorites and that the f
tional form of Vpg might reveal still another fingerprint o
turbulent concentration.

Particles are aerodynamically classified by their Sto
numberSt, the ratio of their stopping timets to the overturn
time of some characteristic eddy. We will make use of Sto
numbers defined relative to two different eddy overturn t
scales: the Stokes number relative to the largest, or inte
scale, eddy timetL: StL = ts/tL, and that defined relative t
the smallest, or Kolmogorov scale, eddy timetη: Stη = ts/tη.
The overturn time of the largest scale eddytL is generally re-
garded as the local orbit period. Preferentially concentr
particles (chondrules, we believe) haveStη = 1 andStL � 1.
For these particles, which are smaller than the gas mo
lar mean free path, the stopping timets = rρs/cρg, where
r is particle radius,ρs is particle material density,c is the
nebula sound speed, andρg is the nebula gas density (We
denschilling, 1977). That is,ts and thus bothStL andStη are
linearly proportional to particle radius. Table 1 summarize
these and other terms.
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Table 1
List of commonly used symbols

Parameter Definition

c gas molecule thermal speed
E(k) turbulent kinetic energy at wavenumberk

H nebula vertical scale height
k eddy wavenumber
kL wavenumber of largest scale eddy
kη wavenumber of Kolmogorov (smallest) scale eddy
L integral or largest scale in turbulent energy spectr
r particle radius
R gas velocity autocorrelation function
Re flow Reynolds number
StL Stokes number relative to largest eddy
Stη Stokes number relative to Kolmogorov scale eddy
ts stopping time of particle due to gas drag
tk overturn time of eddy with wavenumberk
tL overturn time of largest eddy
tη overturn time of Kolmogorov scale eddy
Vg gas turbulent velocity (large eddy)
Vp particle random velocity in inertial space
Vpg relative velocity between particles and gas
Vpp relative velocity between particles
α nebula viscosity parameter;Re= αcH/ν

ε dissipation of turbulent kinetic energy
η Kolmogorov scale
ν molecular kinematic viscosity
νT turbulent kinematic viscosity
ω eddy temporal frequency
ρg gas mass density

1.3. Previous work

We briefly review and simplify the notation of VJMR an
MMV. VJMR assumed a fully developed inertial range
turbulent kinetic energyE, extending from some largest,
integral, scalel = L to zero for the smallest scale. MM
also adopted the Kolmogorov energy spectrum (as shall
but correctly pointed out that turbulence ceases for sc
smaller than the Kolmogorov or inner scalel = η. Espe-
cially for small particles in the chondrule- and CAI-si
range, MMV point out that this has important implic
tions for Vp andVpp; we will show here that the implica
tions are important forVpg as well. Following VJMR, we
work in the spatial frequency regime, wherek(l)= 1/l1

andE(k) = EL(k/kL)
−5/3 for the Kolmogorov spectrum

[Note that ourE(k) is a true energy and is half of VJMR
P(k).] Then the velocity characterizing wavenumberk is
v(k) = (2kE(k))1/2 and the eddy time scale for wavenum
ber k (the energy exchange time scale of VJMR Eq. (1
is t (k) = 1/(kv(k)) = tL(k/kL)

−2/3. As did MMV, we as-
sumeE(k) = 0 for k > kη (no turbulent energy at scale
smaller than the Kolmogorov scale). The mean square tu
lent (fluctuating) gas velocity isVg; thus the typical turbulen
kinetic energy per unit gas mass isV 2

g /2, providing the nor-
malization criterion

(1)

kη∫
kL

E(k)dk = V 2
g /2 =

kη∫
kL

EL(k/kL)
−5/3 dk = 3

2
ELkL.

These definitions lead to our specific definition oftL ≡
1/kLVg. The turbulent gas motions induce fluctuating v
locities in the particle population, leading to diffusion (Vp),
mutual collisions (Vpp), and motion relative to the local ga
(Vpg).

VJMR deriveVp formally by a backward time integratio
of the instantaneous acceleration (their Eqs. (5) and (6))

(2)Vp(t)= t−1
s

t∫
0

exp
(−(t − t ′)/ts

)
Vg(t

′)dt ′,

whereVg(t
′) represents the fluctuating gas velocity histo

along a particle trajectory (formally unknown at this poin
They proceed by approximatingVg(t

′) as an integral over a
(independently acting) spatial frequenciesk with eddy time
scalestk , and approximate the contributions as coming fr
two classes of eddies: “class 1” eddies, with overturn tim
long enough (tk > ts) that particles are always in equilibriu
within them and are primarily just advected by their (tem
rally fluctuating) motions, and “class 3” eddies with overtu
times too short (tk < ts) for the particle to come to equilib
rium as it passes through them. Intermediate, or what m
be “class 2,” eddies are not treated separately but are si
absorbed into the classes on either side. Different simplifi
tions are allowed for each class. The boundary between
classes 1 and 3 isk∗, wheretk∗ = ts. VJMR show that the
class 3 (small, fast) eddies are negligible for velocity co
ponentsVp andVpg but dominate the contributions toVpp.
We will make use of these results in the following.

VJMR first obtain the product〈Vp(t)Vp(t)〉 = 〈V 2
p 〉

by integrating backward over two separate time histor
They introduce the gas velocity autocorrelation funct
(ACF) for gas velocities in their Eq. (16):R(t, t ′; k) =
(E(k)/2πk2)exp(−|t − t ′|/tk). While they do not empha
size the distinction, the ACF to be used in this way
properly Lagrangian, i.e., that determinedalong a particle
trajectory(Batchelor, 1948; Hinze, 1975; Squires and Eat
1990; Elghobashi, 1991), which is a function ofts in general.
However, forStL � 1, and at this stage of our knowledg
this dependence is weak and the distinction is not signifi
(cf. Squires, 1990; Squires and Eaton, 1991).

Subsequently, MMV suggested the more general, eve
ad hoc, functional form

(3)R(t, t ′; k)= E(k)

2πk2

(
1+ |t − t ′|

tk

)n

e−|t−t ′|/tk ,

with n = 0 or 1. As with VJMR, the lack ofts dependence
makes this an Eulerian ACF. They note that then = 1 case
has more plausible physical behavior (zero slope) neart = t ′
than then = 0 (pure exponential) form assumed by VJM
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The zero-slope behavior ofR(t, t ′; k) arises because the tim
scales and spatial scales of realistic turbulence do no
tend to zero, but have lower limits (the Kolmogorov tim
and length scales). In the next section, we present new
sults of two different kinds which validate the preference
n= 1.

2. New results

2.1. The form of the autocorrelation function and
the value ofn

The selection ofn= (0,1) determines the form of the ga
velocity autocorrelation functionR(t, t ′; k). Squires (1990
and Squires and Eaton (1991) measured this function
rectly in direct numerical simulations of turbulence, by f
lowing gas motions along the trajectories of a numbe
particles with differentStL. We have now done the same, u
ing our own three-dimensional (3D) numerical simulatio
(described in Hogan et al., 1999). The MMV ACFR(t, t ′, k)
(Eq. (3)) must be integrated over all 3Dk-space to obtain th
(normalized) temporal form

R(t, t ′)= 1

V 2
g

∞∫
0

R(t, t ′, k)4πk2 dk.

For a general turbulent energy spectrum the energy-
velocity-bearing length scaleL≡ 1/kL) must be calculate
as a weighted mean (e.g., Vincent and Meneguzzi, 1991
ing

L≡ 1

kL
=

∞∫
0

E(k)

k
dk

/ ∞∫
0

E(k)dk

= 2

V 2
g

∞∫
0

E(k)

k
dk.

For an inertial range,kL is merely the smallestk (i.e., ko
of VJMR), but for our noninertial range spectrum, the
tual numerical result must be used. In Fig. 1 we comp
the MMV velocity autocorrelation function forn = 0 and 1
with ACFs derived from numerical simulations describ
by Squires (1990) and Hogan et al. (1999). The sim
tion ACFs, being along actual particle trajectories, are
grangian, and as mentioned in Section 1.3, the MMV AC
are Eulerian. The small differences seen in the knee o
curve are consistent with the difference between Lagran
and Eulerian ACFs, as observed in simulations (Squ
1990; Squires and Eaton, 1991) and as predicted by
ory (Nakao, 1997): The Lagrangian is always less than
Eulerian, even for a fluid.

Then = 1 model is clearly a better fit to the simulatio
results, even without making allowances for these poss
deviations. While the pure exponential case (dashed
-

-

-

-

-

Fig. 1. Autocorrelation function for gas velocities along the trajectory
a Stη = 1 particle, as computed directly from our simulations (symb
for Re= 107 and 427) and from the simulations of Squires (1990; s
line), compared with alternate theoretical approximations using then = 0
(dashed) andn= 1 (dotted) models of MMV. Then= 1 model is the bette
choice because it displaysboth the zero slope at zero delay and the sa
width as the observed autocorrelation function (discussed in Section 2

could be stretched horizontally by applying some arbitr
scale factor to the eddy timetL, this would be physically un
justified and moreover would fail to reproduce the zero-sl
behavior at zero time delay. This has important implicatio
primarily for Vpg andVpp. In Section 3, we again use o
own 3D numerical calculations to directly compareVp and
Vpg with the predictions of the two alternate autocorrelat
functions, and we again reach the same conclusion.

2.2. Closed-form solutions for particle velocities in
Kolmogorov turbulence

2.2.1. Vp: Particle random velocities relative to inertial
space

After some algebra, VJMR derive an expression (th
Eq. (18)) for the mean-square particle fluctuating velo
Vp, of which we need only the large, slow (class 1) eddy c
tribution since the small eddy contribution is negligible
Stη = 1 particles (we will henceforth drop the〈 〉 notation on
Vp, Vg, Vpg, andVpp and will merely recall that all are stati
tical expectation values based on extensive temporal or
tial averaging). Because of our emphasis on particles
Stη = 1, we also replace the upper limit of VJMR’s class
integral (k∗) with the Kolmogorov scalekη. This simplifi-
cation is, in fact, actually fairly good over the entire ran
of StL � 1, precisely becausethe contribution of eddies o
scales smaller thank∗ (the class 3 eddies) is negligible. Th
is, the upper limit can be extended fromk∗ to kη in general
for mathematical simplicity without incurring significant e
ror. Mathematically, the upper limit could even be exten
to infinity (e.g., Völk et al., 1980), but the important role
the Reynolds number and of the Kolmogorov scale is t
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(4)V 2
p ≈ 2

kη∫
kL

E(k)
tk

tk + ts
dk.

Similarly, the basic equation (18) forV 2
p of VJMR, general-

ized by MMV (their Eq. (6)) can be simplified to

V 2
p ≈ 2

kη∫
kL

E(k)

(
1−

(
ts

tk + ts

)n+1)
dk

(5)= 2

kη∫
kL

E(k)

(
1−

(
1

1+ tk/ts

)n+1)
dk

for the particle size regime of interest here. As did VJM
MMV note that the second integral of their Eq. (6)—t
class 3 eddy contribution—is negligible for small particl
so Eq. (5) here retains only the first integral of their Eq. (
We have again simplified the upper limit of integration
the remaining integral for the nominalStη ≈ 1 case, using
k∗ ≈ kη � kL. We validate this by comparing our resu
with those of MMV (Section 2.3).

The result forV 2
p was plotted, but not stated explicitl

by VJMR and MMV (Fig. 1 in both papers) and explicit
derived by Cuzzi et al. (1993, effectively forn = 0; Ap-
pendix B): V 2

p = V 2
g /(1 + StL). It is simple to see why

V 2
p ≈ V 2

g in the limit StL � 1 (and certainly forStη ≈ 1,

whereStL ≈ Re−1/2) sincets << tk in Eqs. (4) and (5) for
nearly allk and overwhelmingly allE(k). This limit is ap-
propriate for chondrule- and CAI-sized particles even in
presence of their small vertical settling velocity—they d
fuse nearly as well as a gas molecule and do not “settle to
midplane” in even a very weakly turbulent nebula (Dubru
et al., 1995; Cuzzi et al., 1996). However, even for small p
ticles,V 2

p andV 2
g are notexactlyequal, resulting in a smal

but very important, relative energy of motionV 2
pg, giving the

velocity with which particles move through the gas and
counter tiny (micrometer-sized) dust grains. We discuss
quantity next.

2.2.2. Vpg: Particle velocities relative to the gas
The average relative velocity magnitude between a

ticle and the turbulent gas isVpg. VJMR make use only
of the spatial frequency components of this quantity, wh
they refer to asVrel(k) (their Eq. (15)). Practically speak
ing, however, a particle will instantaneously sense all e
contributions as oneVpg; we obtain this by merely integra
ing VJMR Eq. (15) overk. If we consider only the part o
the expression relevant forStη ≈ 1 (that for k∗ > kL), ne-
glect any systematic velocity, and again letk∗ ≈ kη � kL,
the second integral vanishes and we obtain

(6)V 2
pg ≈ 2

kη∫
E(k)

(
ts

tk + ts

)
dk.
kL
For this n = 0 case treated by VJMR, it can be eas
verified using Eqs. (4) and (6) that

(7)V 2
pg + V 2

p = 2

kη∫
kL

E(k)dk = V 2
g .

However, this useful result is true, independent ofn. It may
also be obtained by Fourier transform solution of the forc
equations in temporal frequency (ω) space, where the en
ergy spectrum of gas velocity fluctuationsEg(ω), particle
velocity fluctuationsEp(ω), and relative velocity fluctua
tionsEpg(ω) are related by

Ep(ω)=Eg(ω)/
(
1+ t2sω

2) and

(8)Epg(ω)= t2sω
2Ep(ω).

This approach can be traced to Csanady (1963); it is also
scribed by Hinze (1975, Chapter 5), Meek and Jones (19
and Squires (1990, Sections 4.2 and 4.5.1). TheEp solution
was also derived in this way by Cuzzi et al. (1993, App
dix B). It is also clear then thatEpg(ω) + Ep(ω) = Eg(ω),
essentially the same result as Eq. (7) here. Finally, we h
directly verified Eq. (7) in our numerical simulations.

Using this general relationship, we can extend the res
of MMV to obtainV 2

pg for their more generalized gas velo
ity autocorrelation functions (they only present results
V 2

p ). That is, using Eqs. (1) and (5), we get

V 2
pg = V 2

g − V 2
p = 2

kη∫
kL

E(k)

(
ts

ts + tk

)n+1

dk

(9)= 2

kη∫
kL

E(k)

(
1

1+ tk/ts

)n+1

dk.

We will use Eqs. (5) and (9), with assumed inertial ran
expressions forE(k), to derive analytical expressions f
Vp andVpg of hypothetically “chondrule-like” (i.e.,Stη ≈ 1)
particles as functions of their size and the turbulent Reyn
number.

2.2.3. Vpp: Relative velocities between particles of simila
sizes

Small particles of similar sizes are affected coherently
most eddies so move nearly coherently and can have
small relative velocitiesVpp even if their inertial space ve
locitiesVp are comparable toVg. Expressions forVpp (Völk
et al., 1980, Appendix C and Eq. (19); Markiewicz et a
1991, Eqs. (7) and (8)) are more cumbersome than forVp or
Vpg, but they respond nicely to certain simplifying assum
tions. The full expression forVpp for two particles of equa
size is (changing notation slightly from MMV Eq. (9), an
allowing for a finite Kolmogorov scale)

(10)

V 2
pp = 4

kη∫
k∗

E(k)

(
1− ts

ts + tk

)[
g(χ)+ ntsh(χ)

ts + tk

]
dk,
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whereg(χ)= tan−1(χ)/χ andh(χ)= 1/(1+ χ2). The pa-
rameterχ of VJMR and MMV is small in our regime o
interest,

(11)

χ = Vrel(k)tsktk

ts + tk
= Vrel(k)ts

v(k)(ts + tk)
≈ Vrel(k)

2v(k)
< 1,

since in the very limited range ofk over which the integral is
done,ts ≈ tk .2 In factχ � 1 over most of the integral wher
ts � tk , so the functionsg(χ) andh(χ) are≈ 1 or perhaps
as small as a fraction of order unity; thus

V 2
pp ≈ 4

kη∫
k∗

E(k)

[
1−

(
ts

ts + tk

)n+1]
dk

(12)= 4

kη∫
k∗

E(k)

[
1−

(
1

1+ tk/ts

)n+1]
dk.

The integrand is identical to that forV 2
p , but the integral ha

a different prefactor, as well as different limits, which ma
it clear that only the eddies faster thants can perturb identica
particles into having incoherent relative velocities.

2.2.4. Inertial range (Kolmogorov) turbulence; scaling
relations

The general Kolmogorov theory of fully developed tu
bulence provides a convenient and widely applicable ma
matical representation of the turbulent energy spectrum
follow VJMR and MMV in applying it, obtaining hand
closed-form solutions forVp, Vpg, andVpp.

Recall that for the gas,

(13)

tk = l(k)/v(k)= (L/Vg)(k/kL)
−2/3 = tL(k/kL)

−2/3

(Section 1.3; Cuzzi et al., 2001). In Eq. (13) we have m
the usual identification ofVg with the largest scale eddyL.
For the particles,

(14)
ts

tL
= StL = (ks/kL)

−2/3

and

(15)
ts

tk
= (k/ks)

2/3 = ts

tL
(k/kL)

2/3 = StL(k/kL)
2/3.

Note that if we restrict our attention to particles withStη =
ts/tη ≈ 1, then their Stokes number referred to theintegral
scale automatically becomes

StL = ts/tL = tη/tL = (kη/kL)
−2/3 = (

Re3/4
)−2/3

(16)= Re−1/2.

2 In the equation forχ , the mathematical generalization ofVpg by
VJMR and MMV to its kth componentsVrel(k) momentarily reappears
However, it is true in general, at any spatial frequency, that the particle
relative velocity is less than, or at most equal to, the gas velocity itself.
The last substitution of(kη/kL)= Re3/4, whereRe= LVg/ν

is the flow Reynolds number, withν being the molecula
kinematic viscosity, is a direct consequence of the de
tions of the Kolmogorov scale, the energy dissipation r
and the Reynolds number (Tennekes and Lumley, 19
This relation can be obtained without any reference a
to the Kolmogorov spectrum but by merely using scaling
guments relating totL andtη.3 Reis related to astrophysica
“α”-models of the protoplanetary nebula byRe= αcH/ν

with c = sound speed andH = nebula vertical scale heigh
(Cuzzi et al., 2001).

2.2.5. Final expressions forVpg andVpp (andVp)
Substituting the scaling relations in the previous sec

gives for Eq. (9)

V 2
pg = 2

kη∫
kL

E(k)

(
1

1+ tk/ts

)n+1

dk

(17)= 2

kη∫
kL

E(k)

(
StL

StL + (k/kL)−2/3

)n+1

dk.

We use the normalization (Eq. (1)) to write

E(k)= V 2
g

3kL

(
k

kL

)−5/3

,

and we change integration variable tox = k/kL, leaving

(18)V 2
pg = 2V 2

g

3

Re3/4∫
1

(
StL

StL + x−2/3

)n+1

x−5/3 dx,

where in the upper limit we have substitutedkη/kL =
Re3/4 from the scaling relations. Closed-form solutions
Eq. (18) can be obtained forn = 0 or 1. For example, fo
n= 1 the result of the integral is

V 2
pg = V 2

g

[
StL

1+ StLx2/3

]1

Re3/4

(19)= V 2
g

[
St2L(Re1/2 − 1)

(StL + 1)(StL Re1/2 + 1)

]
.

Forn= 0 the result of the integral is

(20)V 2
pg = V 2

g

[
StL ln

(
Re1/2(1+ StL)

Re1/2StL + 1

)]
.

These results make it quite easy to predict both the m
nitude and theStη dependence ofVpg for arbitrary nebula
turbulent intensity. We do not presentVp separately, becaus
it is easily obtained usingV 2

p = V 2
g − V 2

pg (Eq. (9)).

3 Let the energy dissipation rate beε. Thenε = V 2
g /tL = V 3

g /L, where

tL, the energy exchange time, is defined in Section 1.3. Alsotη = (ν/ε)1/2

andη = (ν3/ε)1/4 (e.g., Tennekes and Lumley, 1972, Chapter 1). Solv
givestL/tη = Re1/2 andη/L= Re3/4.
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We solve Eq. (12) forVpp in a similar fashion to the solu
tion for Vpg to obtain, forn= 1:

(21)

V 2
pp = 4V 2

g

3

kη/kL∫
k(ts)/kL

(
2StLx−7/3 + x−9/3

St2L + 2StLx−2/3 + x−4/3

)
dx.

As before, the upper integration limit iskη/kL = Re3/4. For

the lower limit, k∗/kL = k(ts)/kL = (ts/tL)
−3/2 = St−3/2

L

from the scaling relations. The closed-form analytic solut
of this integral is:

V 2
pp = 2V 2

g

[
x−2/3

1+ StLx2/3

]St−3/2
L

Re3/4

(22)= 2V 2
g

[
StL
2

− 1

StLRe+ Re1/2

]
.

Then= 0 form of the solution is somewhat less useful, a
we note it without expanding it as it will not be used furth

(23)V 2
pp = 2V 2

g

[
StL ln

(
1+ StLx2/3

x2/3

)
− 1

x2/3

]Re3/4

St−3/2
L

.

2.3. Detailed comparisons with the models of
Markiewicz et al.

2.3.1. Detailed MMV model
In addition to developing the analytical expressions d

cussed and applied in this paper, we also developed a
tailed numerical model following the prescriptions of MM
exactly (but with a generalized turbulent energy spectru
The full model is valid for allStL. This was needed both t
evaluate their theoretical approach in the context of our
merical simulations of turbulence (Section 3), which hav
non-Kolmogorov spectrum and low Reynolds number co
pared to nebula applications, and to assess the validity o
analytical approximations. The numerical model of MM
is no longer in active use (W. Markiewicz, personal co
munication, 2002), so we digitized theirVpp results (their
Fig. 5) to facilitate comparisons. As seen in Fig. 2, our
numerical model forVpp (solid curves) agrees very well wit
their results forVpp (long dashed curves). In Fig. 2 we al
show our results forVpg, not presented by VJMR or MMV
as obtained by integrating MMV Eq. (4) over all spatial fr
quencies. Note that we, and MMV, both use the appropr
form ofR(t, t ′; k) (i.e., that for the correct choice ofn; Sec-
tion 1.3) for these calculations.

The most striking feature of the results, first noted
MMV, is thatVpp very quickly falls to zero for similar sized
particles withStη < 1 (i.e., StL < Re−1/2, as shown in the
scaling relations of Section 2.2.4) because there is no m
energy in faster eddies to provide relative velocities to s
particles. This does not happen toVpg, because eddies o
all scales contribute. Also note thatVp andVpp decrease fo
largeparticles (StL > 1), as fewer eddies can effectively co
ple to particles with such long stopping times. Naturally,Vpg
simply approachesVg for these large particles.
-

Upon comparing our original analytical results (Eqs. (1
and (22)) with our full numerical model and the MMV r
sults, we found some small quantitative discrepancies a
order unity level, as might be expected. The responsible
proximations were easily identified. First, we approxima
the boundary between class 1 and class 3 eddies byts =
t (k∗), rather than the more complete Eq. (9) of VJMR a
Eq. (4) of MMV, which gives the relevant eddy frequen
in the moving frame of the particle and involvesVrel(k).
Comparison of the two criteria revealed that, to a very g
approximation, the criterionts = t (k∗) gives a value ofk∗
that is too large by a factor close to 2 (Fig. 3). So, after
“calibration,” we merely decrease the lower limit of integ
tion in our Eq. (22) by a factor of 2. Second, even after t
correction, our values ofVpp are about 20% high. This i
easily ascribed to our approximation thatg(χ) andh(χ) are
equal to unity throughout the entire range ofk; in fact, they
are tens of percent smaller than unity over some part of
range, depending on the value ofStL. Empirically, this is cor-
rected by multiplying our analytical expression forVpp by a
constant factor of 0.8. With these two simple adjustme
each correcting a known oversimplification, our analyti
expression forVpp achieves very good agreement with t
MMV results, and with our own full numerical model, ov
the relevant range ofStL � 0.1 or so. There appears to be
reason to make such refinements to our analytical expres
for Vpg (Eq. (19)), because our approximations are better
tified and the agreement with MMV acceptable.

Overall, the approximations succeed better than m
be expected. While our assumptions are only demon
bly valid for StL � 1, the results are demonstrably valid f
StL � 0.1.

2.3.2. Corrected equations based on comparison
with MMV

With insights gained from comparison of our numeri
and analytical models, we have made two small adjustm
to Eq. (22) forVpp which correct for two of our approx
imations. Equation (22) is multiplied by a factor of 0.
and the upper integration limit (St−3/2

L ) is divided by 2, so
the first term in the final expression changes fromStL/2 to
StL/1.03≈ StL. The approximations entering into our e
pression forVpg are better, so no correction is applied. T
final equation forVpp is then

(24)V 2
pp = 1.6V 2

g

[
StL − 1

StLRe+ Re1/2

]
.

The results of Eqs. (19) and (24) (the preferred and adju
n= 1 forms), normalized byVg, are shown in Fig. 4 for the
same three values ofReas in MMV and in close-up form in
Fig. 5.

As shown by MMV (their Fig. 2), and as seen previou
in our Fig. 2, the falloff ofVpp is extremely steep forStη < 1
(i.e.,StL < Re−1/2 as shown in the scaling relations of Se
tion 2.2.4) because there is no more energy in faster ed
to provide relative velocities to such particles.
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te
Fig. 2. Comparison of our numerical version of the full MMV models forn = 0 (light curves) andn = 1 (heavy curves) with digitized results forVpp from

MMV (dashed curves, their Fig. 5, forn = 1). Three differentReare shown: (a) 104, (b) 107, and (c) 109. The dash–dot curves are forVp(n = 1), which
has the same shape for all threeRe. Vpg is shown in the two sets of dotted curves andVpp in the two sets of solid curves. Note that then = 0 values ofVpg
(light dotted curves) are considerably (3–4 times) higher than the preferredn = 1 values (heavy dotted curves), and theStL dependence ofVpg, for n = 0,

never gets much steeper thanSt0.5
L

, whereas forn= 1 a linear dependence is seen forStL < Re−1/2 (Stη � 1). As in Figs. 4 and 5, vertical tick marks indica

StL = Re−1/2 for the three values ofRe.
-
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2.3.3. Simplification of analytically determined velocity
expressions

Equations (19) and (24)—for the preferredn = 1 case—
are readily simplified in different limits of interest. It is sim
ply shown by retaining leading terms that Eq. (19) forVpg

results in two separate regimes:Vpg ∝ St1/2L for Re−1/2 <

StL � 1 andVpg ∝ StLRe1/4 for StL < Re−1/2. This is con-
firmed by inspection of Figs. 2 and 4. While Eq. (19)
not formally valid for StL > 1, inspection reveals that
does reach the correct limiting value. In the special cas
Stη = 1, orStL = Re−1/2, Eq. (19) reduces directly to

(25)Vpg(Stη = 1)= Vg
Re−1/4

√
2

= cα1/4
(

ν

4cH

)1/4

,

where we have substitutedVg = cα1/2 (Cuzzi et al., 2001)
This Redependence, which also applies forStη < 1 in gen-
eral, quite naturally explains a result we obtained empiric
from our numerical models over a range ofRemuch smaller
than nebula values, namely thatVpg/Vg ∝ Re−1/4 (Cuzzi et
al., 1998). By contrast, it is similarly shown from Eq. (2
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Fig. 3. Correction of our approximationk∗ ≈ St−3/2
L by a factor of 2

(dash–dot line), which brings it into excellent agreement (in our rang
validity StL < 0.1) with the exact numerical solution fork∗, shown with
essentially overlapping curves forRe= 104, 107, and 109, computed us-
ing the full VJMR/MMV expression (solid line).Very close toStη = 1
our approximation deviates slightly; notice the tiny tail atStL = 6× 10−3,
k∗ = 103, which is the Kolmogorov scale forRe= 104. The corresponding
features for higherReare off the plot to the left.

that theStL dependence ofVpg for the oldern= 0 case con-

tinues theSt1/2L dependence to arbitrarily smallStL.
These results are also consistent with arguments in C

et al. (1993, Appendix B; A. Dobrovolskis, personal co
munication). We can expand and time-average the insta
neous quantity〈(Vp − Vg)

2〉 to obtain〈VpgVpg〉 = 〈VpVp〉 +
〈VgVg〉 − 2〈VpVg〉. Substituting from Cuzzi et al. (1993
Eq. (B11)) we find 〈VpVp〉 = 〈VpVg〉 = 〈VgVg〉/(1 + StL),
leading toVpg = (StL/(1 + StL))1/2Vg, which reaches the
same limits as Eq. (19)exceptfor particles withts � tη, or
Stη � 1, because the integral in its derivation (Cuzzi et
1993, Eq. (B11)) extends to infinite eddy frequency.

Thus, unlessts � tη (StL <Re−1/2), the particle–gas rela
tive velocity in turbulence is generally proportional to

√
StL

for small StL. The steeper dependence ofVpg on StL and
Stη is restricted (in turbulence) to particles withStη � 1.
That is, evidence for a more nearly linear dependence ofVpg

on r, if the environment was turbulent, would imply that t
particles in question wereStη � 1 particles. This new resu
derives directly from the use of then= 1 gas velocity auto
correlation function. The primary qualitative change is in
particle size dependence ofVpg for particles withStη � 1.
We address the significance of this in more detail in a fo
coming paper (Cuzzi, in preparation).
i

-

Fig. 4.Vpg(StL) (dotted; Eq. (19)), andVpp(StL) (solid; Eq. (23)), forRe

values of (a) 104, (b) 107, and (c) 109. The digitized results of MMV (their
Fig. 5) for Vpp, for the same three values ofRe, are shown by the dashe
lines. OurVpp expression is invalid forStL > 0.1 or so (see text).

Fig. 5. A close-up plot ofVpg (dotted),Vpp (solid), and the digitized MMV
results forVpp (dashed; their Fig. 5), all for theRe= 107 case. The dash–do
line has slope 1/2. The vertical short dashed line indicatesStη = 1, where

StL = Re−1/2; here,Vpg ∝ St0.75
L .

Finally, using Eq. (24) forVpp, we get

(26)Vpp(Stη = 1)= √
0.8VgRe−1/4 = 1.26Vpg,

where we used Eq. (25) forVpg.
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3. Comparison with numerical results

In this section we compare numerical results from
full 3D Lagrangian particle–gas model (Hogan et al., 19
with full numerical calculations using our implementati
of MMV (Section 2.3). We present particle velocities re
tive to the computational box (Vp) and relative to the loca
fluid velocity (Vpg), as obtained from our simulations. The
velocities are defined as RMS spatial averages over all
ticles in a single snapshot, orV = (〈(Vx − 〈Vx〉)2〉 + 〈(Vy −
〈Vy〉)2〉 + 〈(Vz − 〈Vz〉)2〉)1/2, whereV representsVp or Vpg
at the location of each particle, and〈 〉 is the averaging op

erator 〈. . .〉 = ∑Np
i=1(. . .)/Np, whereNp is the number o

particles in a single snapshot. Of course,〈V 〉 is very close
to zero for both these quantities since there is no mean
in our simulations.

This spatial averaging approach is equivalent to the t
poral averaging implicit in the MMV model, because of t
ergodic principle that equates temporal and spatial ave
ing under suitable conditions. In our case, the conditions
satisfied because our integral length scaleL is small com-
pared to the spatial period of the computational domain
all Re.

The case ofVpp is more complicated, as the results d
pend on the proximity region chosen for “neighboring” p
ticles. For the most useful comparisons with the pre
tions of MMV and VJMR, and with the expected uses
this quantity in mind, the region over which particle neig
bors are selected should be as small as possible—less
η certainly—and here we run into sampling errors. P
haps most important, the deviation of our 3D model ene
spectrum from a Kolmogorov spectrum is significant (e
Squires and Eaton, 1990), andVpp is much more sensitiv
to the details of the high-spatial-frequency end of the
ergy spectrum than eitherVp or Vpg. Since the main purpos
of these calculations is to verify numerically the prefere
for then= 1 autocorrelation function in an independent w
from the direct comparison shown in Fig. 1, and because
case is already well made by theVp andVpg plots, we presen
no comparisons forVpp.

Figures 6 and 7 show that then= 1 autocorrelation func
tion provides a much better fit to bothVp andVpg than the
n = 0 version. ForVpg, the fits of the MMV theory to ou
simulations are less perfect than forVp. We can see sever
possible explanations for this. For instance, the mathe
ically simple form adopted for then = 1 autocorrelation
function is not a perfect fit to the actual numerically det
mined one (Fig. 1), by about the correct fractional amo
Also, we have emphasized that the correct velocity auto
relation function to use is thatalong a particle trajectory
(Meek and Jones, 1973), and this function is actually so
what size dependent even over the rangeStη ∼ 1 (see, e.g.
Squires, 1990, Fig. 4-23). Finally, because of the deviatio
our turbulent kinetic energy spectrum from an inertial ran
some of the definitions of eddy times used in the MMV t
ory might be inappropriate. It would not be surprising
-

n

Vpg to be more sensitive to these small deviations thanVp
(compare Figs. 6 and 7). In spite of the small deviati
in Vpg, the combination of the direct comparisons of

Fig. 6.Vp vsStL obtained from our direct simulations (symbols) compa
with MMV predictions for modelsn= 0 (solid line) andn= 1 (dotted line).
All velocities have been normalized by the RMS fluid velocityVg. Results
are essentiallyRe independent. TheStL values for each point are define
relative to a large eddy time based on aconstantlarge eddy timetL, which
is essentially the correlation time of Fig. 1. Then = 1 MMV prediction is
clearly a better fit to the numerically simulated velocities.

Fig. 7.Vpg obtained from our direct simulations (symbols), compared w
predictions of the MMV models withn = 0 (solid lines) andn = 1 (dotted
lines) vsStL. All curves have been normalized by the RMS fluid veloc
Vg. Here there is a smallRe dependence, as seen in Fig. 2, for both
numerical calculations and theoretical predictions. The small deviation
tween then= 1 calculations and the MMV theory is discussed in Sectio
but here again,n= 1 is much better thann= 0.
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autocorrelation functions themselves (Fig. 1) and the c
parison of the velocities derived using them (Figs. 6 and
makes it clear that then = 1 autocorrelation function is th
best choice.

4. Summary and conclusions

We have presented theoretical and numerical res
which describe the turbulence-driven velocities of pa
cles in theStL < 1 size regime which might characteri
chondrules and similar sized particles. The problem is f
damentally nonlinear because the perturbations on a pa
depend on its trajectory, which is in turn determined by
perturbed velocity. Overall, we numerically verify, using fu
3D turbulent calculations with particles, the general solut
approach of Völk et al. (1980) as modified by Markiewicz
al. (1991). That is to say, we validate their approach to
cumventing the “essential nonlinearity” of the problem (
Meek and Jones, 1973).

More specifically, we verify in two different ways the in
tuitive preference of MMV for a gas velocity autocorrelati
function—at least along the trajectories ofStL � 1 particles.
The MMV n = 1 velocity autocorrelation function leads
a particle–gas relative velocity function that approaches
ear dependence on particle size for particles in theStη ≈ 1
regime and becomes and remains linear for arbitrarily sm
sizes. This is quite a different result than predicted by
original VJMR (n= 0) expressions.

Finally, we derive simple, closed-form, analytic expre
sions forVp, Vpg, andVpp (the latter, for comparable siz
particles only) for arbitrary levels of nebula intensity,
characterized by the flow Reynolds numberRe or its cor-
responding “α.” One immediate result of interest is that t
velocity of small particles relative to a turbulent gas is
proximately linearly dependent on particle stopping tim
itself linearly proportional to particle radius in this regim
These expressions may be of broader general use.
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