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We have developed a numerical Regolith Radiative Transfer (RRT) model

based on the Discrete-Dipole Approximation (DDA), which iteratively solves

the exact wave equations for a granular target in response to an incident plane

wave and mutual interactions between all component grains. We extend the

traditional DDA approach in two ways: the DDA target is laterally replicated

using periodic boundary conditions, to represent a small piece of a nominally

flat granular particle surface, and the emergent intensity is sampled in the

near field of the target to avoid diffraction-like artifacts arising from its finite

size. The approach is applicable in regimes for which the assumptions of

current RRT models are invalid, such as wavelength-size particles which are

closely packed. In this first paper we describe the technique and present tests

and illustrative results for simple cases, using layers of varying filling fraction

between 0.01 and 0.7, containing nominally spherical monomers of uniform

composition (SiO2). We motivate the results with a simple “toy model” of

scattering by a target with multiple interfaces. The model is easily extended

to layers of particles which are heterogeneous in composition and arbitrarily

shaped. c© 2012 Optical Society of America

1. Introduction

Interpreting remote observations of granular bodies is an important tool in determining the

surface composition of all airless solid bodies in the solar system. The granular surfaces of

these bodies are constantly fragmented and mixed by meteoroid impacts, and are referred

to as regoliths. Regolith particles are often comparable to or smaller than the wavelength

of interest, and are packed to varying degrees of porosity such that many particles are

touching. Models by Conel (1969), Hapke (eg., 1981, 1983, 1999), Lumme and Bowell (1981),

Shkuratov et al (1999a,b), and others have had many successes, but make certain simplifying

assumptions which are not valid in all regimes of interest, and consequently fail to match

the appearance of the spectra of granular materials at certain wavelengths (Moersch and

Christensen 1995; see also section ?? below). All widely used models are suspect when
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the grains are not well-separated but indeed closely packed, violating the assumptions of

independent particle scattering (see however Mishchenko 1994, Mishchenko and Macke 1997,

Pitman et al 2005), and Hapke/Shkuratov models in particular become problematic when the

regolith grains are not large compared to a wavelength. As the expectations of compositional

determination by remote sensing, and in particular by thermal infrared spectroscopy, become

more demanding, improved theories will be needed which are able to, at least, adequately

represent the spectral properties of known samples. This calls for a theory that reproduces

the spectra of known samples over a wide range of refractive indices, size/wavelength ratio,

and porosity.

Modeling a regolith layer generally starts with calculating the single scattering properties

(albedo and phase function) of an individual regolith grain, and then using one of several

methods to derive the overall reflection and transmission of a semi-infinite layer composed

of many similar grains. The approaches to date have been adapted from classical approaches

to atmospheric radiative transfer. In clouds, for instance, individual scatterers are generally

separated by many times their own size and the scattering behavior of an isolated particle

is appropriate for modeling ensembles of these particles. The single scattering albedo can be

calculated analytically for small particles in the Rayleigh limit, and Mie scattering is used for

larger spherical particles. Semi-empirical adjustments can be made at this stage to allow for

particle nonsphericity (Pollack and Cuzzi 1979), or more elaborate T-matrix calculations can

be used (Kolakolova et al or whoever 19??). Mie scattering is cumbersome in the geometrical

optics limit, but various ray-optics based approaches can be used here (Hapke 19???, Liou

et al 19??, Shkuratov 1999a,b, Mishchenko and Macke 1997).

Once the grain single scattering albedo ̟o and scattering phase function P (Θ) (the dis-

tribution of intensity with scattering angle Θ from the incident beam) are obtained, various

multiple scattering techniques can be used to derive the properties of an ensemble of such

particles in a layer. These techniques include the N-stream or discrete ordinates approach

(Conel 1969, Stamnes et al 19??), adding/doubling of thin layers (Hansen and Travis 1974,

Wiscombe 1975(a,b), Plass 1973), or Chandrasekhar’s X ,Y , or H functions, for which tabu-

lations and closed-form approximations exist in the case of isotropic scattering (Hapke 1981).

A variety of “similarity transformations” can be used to convert arbitrary grain anisotropic

scattering properties into their isotropic scattering equivalents (van de Hulst 1980; see Irvine

1975), allowing the use of these standard isotropic solutions.

Generally, these approaches assume the regolith grains have scattering properties which

can be calculated in isolation. The independent scattering assumption is normally assumed

to be satisfied when the particle spacing l is larger than several grain radii rg (van de

Hulst 1981)1; Hapke (2008) has extended this spacing constraint to be a function of the

1The source is a brief comment in section 1.21 of van de Hulst’s book.
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radius/wavelength ratio itself by adopting van de Hulst’s assertion about the required spac-

ing, and interpreting this spacing as a distance between surfaces of adjacent particles. This

approach predicts that interference effects are not important in most regoliths when rg ≫ λ,

but filling factors less than 0.1 are needed to validate incoherent, independent scattering

when rg ∼ λ (see Appendix A).

A number of theoretical and experimental studies have been conducted regarding the role

of close packing effects for over fifty years. An early study found changes in reflectance with

porosity depended on grain albedo (Blevin and Brown 1961). Some studies have concentrated

on the dependence of extinction on porosity, without discussing the scattering or reflectivity

of the medium (Ishimaru and Kuga 1982, Edgar et al 2006, Göbel et al 1995, are there more

recent refs?); these latter studies are valuable in indicating the porosity regime where pack-

ing effects become important (around 10% volume filling factor), but even this threshold is

a function of particle size and wavelength (Ishimaru and Kuga 1982). As a partial attack

on the close-packing problem, various approaches have been tried to treating the diffracted

component of both the phase function and albedo as unscattered in the dense regolith envi-

ronment (Wald 1994, Pitman et al 2005; see however Mishchenko 1994 and Mishchenko and

Macke 1997 for cautionary notes). Other research has focussed on the Lorentz-Lorentz (EMT

or Garnett???) technique for fine powders (ref???) and variants on hard-sphere packing po-

sitional correlation functions such as the Percus-Yevick static structure theory (Mishchenko

1994, Pitman et al 2005). These approaches are promising in some ways, but in other ways

they degrade agreement with the data (Pitman et al 2005).

Few of these studies to date have attempted a combined treatment of variable refractive

indices and porosity, but it is precisely this combination that leads to some of the most

glaring failures of traditional models (see below). The formulation by Hapke (2008) suggests

that increased filling factor almost always leads to increased reflectivity, unless the scattering

grains have extremely high albedo ̟o > 0.95. Indeed, Blevin and Brown (1961) find that

packing increases the reflectance of dark materials and decreases that of bright materials;

however, the grain albedo threshold where the behavior changes may not be as high as

modeled by Hapke (2008). Finally, many previous studies apply to regimes where the particle

size is large compared to the wavelength.

Our approach can capture the combined role of size/wavelength (even when they are

comparable), porosity, and refractive index. It avoids all of the common but frequently in-

appropriate simplifying assumptions by use of the discrete dipole approximation (DDA) to

model radiative transfer in granular regoliths. In the DDA, scattering calculations are not

limited by packing density, shape, or size of particles in the regolith. The technique has

become more productive since its introduction (Purcell and Pennypacker 1973) due to a

combination of increasing compute power and improved algorithms (Draine and Flatau var-
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ious papers); computational power remains its limiting factor, however. In section ?? we

compare predictions of some current models with spectral data, to illustrate shortcomings of

the models. In section ?? we describe our model, which has several novel aspects. In sections

?? and ?? we present some tests. In section ?? we give some preliminary results, and in

section ?? give possible explanations and speculations.

2. Current model inadequacy: Thermal emission spectroscopy of SiO2

Thermal emission spectroscopy is central to a new generation of planetary and astronomical

exploration (Christensen 19??, Emery 200? get some of these from Phil); moreover, it lies

entirely in the problematic regime where the regolith grain size and separation are both

comparable to the wavelength. Like nearly all treatments in the past, our models of emission

spectroscopy start with reflectivities R, and relate them to emissivities E by the principle

of detailed balance or Kirkhoff’s law (Goody 1964; Linsky 1972); in the simplest case when

both quantities are integrated over all incident and emergent angles, E = 1−R. Analogous

expressions can be derived when angle-dependent quantities are needed (see below).

Regolith scattering by grainy surfaces can be categorized by two or three major optical

regimes defined by the refractive indices of the regolith material (see Mustard and Hays 1997

for a review). The first spectral regime is called “surface scattering” (at wavelengths where

real and/or imaginary refractive indices, and surface reflectance, are large and the wave

hardly penetrates into the material); restrahlen bands fall in this regime. The second regime

is “volume scattering” (at wavelengths where the imaginary index is low and the real index

is of order unity) which has a more moderate surface reflectivity; transparency regions result

from this range of properties (Mustard and Hays 1997, MH97). Increasing the imaginary

index in this refractive index regime increases absorption and decreases reflectivity. A third

characteristic spectral property is a Christiansen feature, where the real index is equal to 1, so

surface reflections vanish and the emissivity closely approaches unity. Mineral identification

and grain size estimation from remote sensing data follow from modeling the shapes and

relative strengths of these strong and weak spectral features.

As an exercise complementary to that of Moersch and Christensen (1995) we compared the

performance of several typical RRT models against new laboratory measurements of thermal

emissivity from layers of quartz grains with various sizes (data courtesy P. Christensen

and J. Michalski). The data were taken at room temperature, and represent directional

emissivities viewed roughly 30 degrees from the normal, with a field of view 30 degrees

wide. Regolith samples were approximately 1 cm thick and their porosity is estimated by

weighing as approximately 30% (P. Christensen, personal communication 2011; Phil - is

this all correct??). Our models used recent values of SiO2 refractive indices from Wenrich

and Christensen (1996) who (as did MC95) noted a discrepancy with the standard values
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of Spitzer and Kleinman (19??; the discrepancy apparently arises from tabulated values of

oscillator parameters in Spitzer and Kleinman 19??). In any case, we find that the differences

in refractive indices - perhaps at the 10% level at the lowest values of imaginary index in

transparency bands - have only a barely noticeable effect on the model results shown in

figure ??. Since the SiO2 refractive indices have now been measured twice independently,

with the differences having a negligible effect on model results, this suggests that the model-

data discrepancies in the transparency bands are not due to uncertainties in SiO2 refractive

indices but arise from a more profound cause.

Our three models are similar to those used by MC95 (one is identical) and will be seen to

capture the same general behavior. All of our models used Mie theory to get the individual

grain albedo ̟o, phase function Po(Θ), and asymmetry parameter go directly from the re-

fractive indices. This is because the first step of Hapke theory (using geometrical optics to

get the grain albedo) is not justifiable here, where the grain size and wavelength are compa-

rable. The asymmetry parameter go = 〈cosΘ〉 is a mean of (cosΘ) over scattering angle Θ,

as weighted by the phase function (see the review by Irvine 1975). To allow for the optical

anisotropy of SiO2, we computed grain properties separately using the ordinary (ord) and

extraordinary (ext) ray refractive indices, and then obtained weighted grain averages using

̟o = (2̟o,ord +̟o,ext)/3, and similarly for go.

Mie theory implicitly includes diffraction in ̟o, Po(Θ), and go, because the particles are

treated as isolated, independent scatterers, and for nearly all combinations of grain radius

and wavelength, regolith grains are substantially forward scattering (see Hansen and Travis

1974, or Mishchenko and Macke 1997). Two of our models accept this behavior at face value.

Both then obtain thick-layer solutions using very similar scaling relations. In one of the

earliest attacks on this problem, Conel (1969) showed that a simple two-stream solution to

the radiative transfer equation, taken to the limit of a semi-infinite layer, has a closed-form

solution for hemispherical (flux) reflectivity R and emissivity E = 1− R:

E = 1− R =
2

u− 1
, where (1)

u =
(

1−̟ogo
1−̟o

)1/2

. (2)

MC95 present plots of results using this theory, although note a typo in the equation just

below their equation 9 (compare Conel 1969, equations 10 and 15); our results for this and

other models are shown in figure ??.

In our second model we use an empirical scaling transformation from van de Hulst (1980),

which also starts with ̟o and go and derives a more detailed scaling relation for the inte-

grated spherical albedo A of a large, smooth, regolith-covered particle, which is close to the
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hemispherical reflectivity R of a slab of its surface (see Cuzzi 1985):

E = 1−R = 1−
(1− s)(1− 0.139s)

1 + 1.17s
, where (3)

s =

(

1−̟o

1−̟ogo

)1/2

=
1

u
. (4)

The van de Hulst expression for E (equation ??) is basically a numerical refinement of Conel’s

two-stream expression (based on many comparisons with exact calculations), expanded to

higher order in s, in that the van de Hulst R ∼ (1− s)/(1 + s) = (u − 1)/(u+ 1), which is

exactly the Conel R, so it is not entirely independent but does enjoy some independent and

exhaustive numerical validation.

In Hapke theory the diffraction lobe of the grain is explicitly neglected, to motivate

isotropic scattering, which is then assumed for all orders of scattering except the first (for

isotropic scattering the H-functions of Chandrasekhar are readily available). The validity of

retaining or removing the diffraction contribution to the grain albedo and phase function has

been debated in the literature (see Wald 1994, Wald and Salisbury 1995, Mishchenko and

Macke 1997, and Pitman et al 2005). In fact, even if the diffraction lobe per se is arbitrarily

removed, this does not necessarily imply the remainder of the scattering by the grain is

isotropic (Pollack and Cuzzi 1979, Mishchenko and Macke 1997). However, for illustrating

the state of widely used models, we include in figure ?? an H-function based emissivity as

a placeholder for the full Hapke theory. Since we use Mie scattering to obtain ̟o and go,

we transform these values to equivalent isotropic scattering albedos ̟i using a standard

similarity transformation (Irvine 1975, and Hapke 1983 equation 10.25a):

̟i =
̟o(1− go)

1−̟ogo
. (5)

For forward scattering particles, this transformation reduces the albedo and can be thought

of as “truncating” or removing the diffraction peak. We then proceed to integrate the bidi-

rectional reflectivity R(µo, µ), which is a function of incidence angle θo and emission angle

θ, where µo = cosθo and µ = cosθ (Chandrasekhar 1960):

R(µo, µ) =
̟i

4π

µo

µo + µ
H(µo)H(µ) (6)

over all incidence angles θo to derive the normal (hemispherical-directional) reflectivity R(µ =

1), using closed form expressions for H in Hapke 1983 (equations 8.22b, 8.25, and 8.57), and

then set the corresponding emissivity E(µ = 1) = 1−R(µ = 1) (Goody 1964, Linsky 1972).

While the Mie-Conel and Mie-van de Hulst models are in the spirit of hemispherical emis-

sivities (averaged over viewing angle), the Mie-H-function model is a directional emissivity

(at normal viewing). As the experimental data used a beam of significant angular width, it
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is not clear whether either of these is to be preferred a priori. The Mie-Conel and Mie-van

de Hulst approaches accept the forward-scattering nature of the grains as calculated by Mie

theory, and the H−function (and Hapke) models effectively preclude it. Pitman et al (2005)

used a discrete ordinates code, rather than assuming isotropic scattering, and also found

similar behavior before applying their packing corrections.

Fig. 1. Comparison of Mie-Conel, Mie-van De Hulst, and Mie-H-function models (dotted,

dot-dashed, and dashed lines) with laboratory emissivity measurements of layers of size-

sorted granular quartz (solid lines, J. Michalski and P. Christensen, personal communication,

2006), for three separate grain sizes
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For the largest grain sizes, our models, and previous models, are in fair agreement with the

experimental data. However, for wavelength-sized and smaller grains, the correspondence is

unsatisfactory, as already shown by Moersch and Christensen (1995, MC95), Mustard and

Hays (1997; MH97), and Pitman et al (2005) for grains with a well known size distribu-

tion. For quartz, MH97 and MC95 both find that strong restrahlen bands show almost

no variation with regolith grain size while the data show noticeable variation. These are

the high-refractive-index “surface scattering” regimes. Even bigger discrepancies are seen in

the “volume scattering” transparency regimes. For moderate-size grains, the models predict

emissivity minima in transparency bands such as 10-12µm, 13-14.5µm, and 15-17µm,which

are much more dramatic than shown by the data, and the discrepancy increases with smaller

grain size (also pointed out by Wald and Salisbury 1995). MH97 even show (in their figure

11) that the sense of the observed 10-12 and 13-14µm band strength variation, as grain

size varies between 2-25µm, is directly opposite the sense predicted by the models in figure

??. In the spectral range 19-22.5µm, the models predict a double minimum in the emis-

sivity while the data show a single minimum. This might be related in some way to how

all these models treat the birefringence properties of SiO2. Furthermore, MH97 show that

the asymmetry of the restrahlen bands for Olivine at 9-11µm wavelength is opposite that of

theoretical predictions. For SiO2, our model results reinforce these conclusions. Hapke (2008)

suggested that, for almost all cases except extremely high grain albedos, increased (realistic)

volume filling factor increases reflectivity. However, as we see from comparing ideal models

to nonideal data, the data show increased emissivity (decreased reflectivity) in transparency

regions relative to the models. As we show models which both include, and reject, grain

forward scattering, this alone is unlikely to be the primary reason (although the H−function

model, which rejects forward scattering and forces the phase function to be isotropic, might

be said to provide marginally better agreement with the data). Thus, we feel that a good

explanation for the observed effects is still to be found.

It is perhaps not surprising that current models have such problems, because their basic

assumptions (widely spaced and independently scattering particles which are either spherical

(Mie), much larger than the wavelength, and/or independently scattering are violated by key

physical properties of regolith surfaces in the regime shown (close packing, irregular particles,

wavelength size grains). The fact that these popular models fail to capture important features

of laboratory silicate data casts doubt on their validity for inferences of grain composition or

size from mid-infrared observations of planetary surfaces in general. As discussed below, we

suspect the primary explanation for the discrepancy is the effect of the nonideal (moderate

to large) volume filling factor of the real granular material.
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3. A new RRT model using the Discrete Dipole Approximation

Our model is based on the Discrete Dipole Approximation (DDA) which calculates the scat-

tering and absorption of electromagnetic waves by a target object of arbitrary structure - in

our case, for closely packed, irregular grains of arbitrary radius rg. Target objects are mod-

eled with a suitably populated lattice of individual polarizable dipoles with size smaller than

a wavelength. The polarizability of each dipole can be adjusted to represent the refractive

index of an arbitrary material or free space (Draine and Flatau 1994,1988). An important

criterion for the dipole lattice is that the size of, and spacing between, the dipoles (both given

by d) must be small compared with the wavelength λ = 2π/k of the incident radiation in the

target material: |M |kd < 1/2, where M is the complex refractive index of the target. The

second criterion is that for a given d, the total number of dipoles N must be large enough

to resolve the internal structure of the target and its constituent monomers satisfactorily.

In our case, monomers may overlap, but typically we need (rg/d)
3 dipoles per monomer.

Heterogeneous composition and irregular shape of monomers are easily captured this way,

but we reserve those refinements for the future.

To apply the DDA approach to a regolith layer, we have made several changes from the

traditional implementation. In one novel modification, horizontally extended, semi-infinite

slabs of regolith, made up of closely packed grains of arbitrary size and shape, are modeled

using a single target “unit cell” subject to periodic horizontal boundary conditions or PBC

(Draine and Flatau 2008). In a second novel modification, the emergent intensities from the

layer are calculated using the full near field solution; traditionally all scattering calculations

have been done in the far field. This step itself has two parts: evaluating the scattered elec-

tric field on a planar 2-D grid close to the target cell, and evaluating the angular intensity

distribution emerging from this grid in an outbound hemisphere using a Fourier transform

approach. These angular distributions of emergent intensity, which can be sampled on Gaus-

sian quadrature grids, can then provide input into standard adding-doubling codes to build

up solutions for thicker layers than we can model directly with DDA; this next step is a

subject for a future paper.

Below we describe our approach in its three main elements: (A) horizontal periodic bound-

ary conditions, (B) calculation of the scattered fields in the near field of the target, and (C)

determination of the angular distribution of the emitted radiation using a Fourier analysis

“angular spectrum” method.

3.A. Periodic boundary conditions

A finite rectangular slab of monomers composed of gridded dipoles, referred to as the Target

Unit Cell (TUC), is periodically replicated, to represent a horizontally semi-infinite 3-D layer

(see Draine and Flatau 2008). Each dipole in the TUC has an image dipole in each periodic
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replica cell. All dipoles in the TUC and replica oscillate with the appropriate phases in their

initial response to an incident plane wave. The electromagnetic field inside the target is then

recalculated as the sum of the initial radiation and the field from all other dipoles in the

layer; monomers on the edge of the TUC are still embedded in the field of many adjacent

monomers by virtue of the PBC. A steady state solution is obtained by iterating these steps.

The dipoles are located at positions r = rjmn with the indices m,n running over the replica

targets, and j running over the dipoles in the TUC:

rjmn = rj00 +mLy ŷ + nLz ẑ (7)

where Ly, Lz are the lengths of the TUC in each dimension. The incident E field is

Einc = E0e
ik·r−iwt. (8)

The initial polarizations of the image dipoles Pjmn are also driven by the incident field,

merely phase shifted relative to the TUC dipole polarization Pj00:

Pjmn = αjEinc(rj, t) = αjE0e
ik·(rj00+mLy ŷ+nLz ẑ)−iwt = Pj00e

ik(rjmn−rj00) (9)

The scattered field at position j in the TUC (m = n = 0) is due to all dipoles, both in the

TUC (index l) and in the replica cells.

Ej00 = −Aj,lmn

[

Pl00e
ik(rjmn−rj00)

]

= −Aj,lmne
ik(rjmn−rj00)Pl00 ≡ −APBC

j,l Pl00. (10)

APBC
j,l is a 3 x 3 matrix that defines the interaction of all dipoles in the TUC and replicas

residing in the periodic layer (Draine 1994, 2008) ( Bruce, can we come up with a better

flow of equations for Ajl to Ajlmn? ). Once the matrix APBC
j,l has been calculated, then the

polarization Pj00 for each dipole in the TUC can be calculated using an iterative technique:

Pj00 = αj

[

Einc(rj)−
∑

l

APBC
j,l Pl00

]

, (11)

where the criterion for convergence can be set by the user. In the next two subsections we

will show how we go from the field sampled on a two dimensional grid parallel to the target

layer, to a full three dimensional angular distribution in elevation and azimuth relative to

the target layer normal.

3.B. Calculating radiation from the PBC dipole layer

Once a converged polarization has been obtained for all dipoles in the target layer, we can

calculate the radiated field. For most purposes in the past, the radiated field was calculated

in the far field of the target (kr ≫ 1); however, this introduces edge effects inconsistent
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Fig. 2. Schematic of the DDA code operated in the Periodic Boundary Condi-

tion (PBC) regime, with the Target Unit Cell (TUC) shown in the center and

image cells arrayed around. regardless of what Bruce calls them in the users

guide, can we call these ”I”’s ”F’s”? Io indicates an incident plane wave (

flux in erg cm−2 sec−1) and Is indicates the scattered flux. Θ (and θ) are the

angles between the incident (and scattered) beam and the a1 axis normal to

the particle layer. Also, φo and φ are the azimuth angles of these beams around

the normal of the layer. The angle β determines the azimuth angle of the in-

cident beam relative to the a3 axis fixed to the target. The phase angle of the

scattered beam is α and the scattering angle of the emergent beam, relative to

the incident beam, is θs. I hate using Θ this way, it is called scattering angle

usually. Can we delete it? If not I can change the definition of scattering angle

in section 2.
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with a laterally infinite horizontal layer, since the radiation is calculated by summing over

the radiated contributions only from a single TUC (see Appendix B). This problem would

remain even if we were to include more image cells or a larger TUC; no matter how large the

target, its finite size will be manifested in the far radiation field as an increasingly narrow

diffraction-like feature. Another consideration supporting the use of the near field, is that we

plan to build up the properties of thick targets, beyond the computational limits of the DDA,

by combining the properties of our DDA targets using an adding-doubling approach in which

each is envisioned to be emplaced immediately adjacent to the next. For this application, the

far field limit does not apply and we have to move closer to the layer to sample the radiation

field.

3.B.1. The near field

Our solution to the problems mentioned above is to calculate the radiated field in close

proximity of the target that is, in its near field. In the forward direction, this region can be

thought of as the shadow of the layer. We use the full free space Green’s function, which

incorporates all proximity effects, to calculate the radiated field in this regime. The radiated

field is a sensitive function of position with respect to the layer. In the horizontal (y and z)

directions, the phase of the field fluctuates rapidly. In the x direction, as the field travels

away from the layer, it transitions from the true near field (where evanescent waves can

be present) to the Fresnel zone where patches of dipoles within the target are oscillating

coherently, and finally to the far field limit where the layer is seen as a finite target.
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Fig. 3. Schematic of our approach, illustrating how we obtain the forward

scattered diffuse intensity at point X in the shadow or Fresnel zone of the

TUC, uncorrupted by edge effects from the TUC (see Appendix B). The diffuse

reflectivity is determined at a similar distance from the lit face of the TUC.

3.B.2. Sampling the field on a 2-D sheet

The first step in obtaining the scattered intensity within the classical shadow zone of the slab

is to calculate the total electric field on a 2-D grid (which we call the Target Unit Radiance

or TUR) just outside the layer. We will use both the TUC and the image cells out to some

distance in calculating the field on the TUR. The general expression for the field due to a

collection of j dipoles with polarization Pj is as follows:

ETUR = k2
N
∑

j=1

Pj ·
~~G,where (12)

~~G =
eikrjk

rjk

(

k2(r̂jkr̂jk −
~~I) +

ikrjk − 1

r2jk
(3r̂jkr̂jk −

~~I)

)

, (13)

where rj = distance to grid points in the TUC, rk = distance to grid points in the

TUR, rjk = |~rj − ~rk|, r̂jk = (~rj − ~rk)/rjk,
~~I is the identity tensor, and

~~G is the free

space tensor Green’s function. The field is calculated on TUR’s on both sides of the

slab, i.e., on the reflected and transmitted sides. The transmitted side includes both

the directly transmitted incident electric field that has been attenuated through the slab

and the scattered field. This method has been written as a FORTRAN code called

DDFIELD, one version of which is currently distributed with DDSCAT as a subroutine

(http://www.astro.princeton.edu/ draine/DDSCAT.html). The version used in this paper is
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slightly different and was parallelized using MPI and OpenMP. The dipole polarizabilities

calculated by DDSCAT are fed into DDFIELD to calculate the electric field from them. The

vector field E(y, z) = Ex(y, z)x̂ + Ey(y, z)ŷ + Ez(y, z)ẑ, is calculated separately for each of

the two polarization states of the incident radiation.

3.C. Determining the angular distribution of scattered intensity

Our approach to determining the emergent intensities in the near field, as a function of angle

(θ, φ) for any given (θo, φo), follows the formalism of Mandel and Wolf (1994). A complex field

distribution or waveform can be represented by a superposition of simple plane waves and

Fourier decomposed across a plane (see below). The waveforms spatial frequency components

represent plane waves traveling away from the plane in various angular directions. Consider

a monochromatic wave-field E(x, y, z) that satisfies the Helmholtz equation across the TUR

plane at x = x0; it can be represented by a Fourier integral:

ETUR = E(x0; y, z) =
∫ ∫

E(x0; ky, kz)e
i(kyy+kzz)dkydkz. (14)

Then the field E(x0; y, z) has the following inverse transform :

E(x0; ky, kz) =
∫ ∫

E(x0; y, z)e
−i(kyy+kzz)dydz. (15)

The Helmholtz equation is:

(▽2 + k2)E(r) = 0,where r = (x, y, z). (16)

Substituting the 2-D representation of the field E(x, y, z) into the Helmholtz equation, we

get the differential equation:

∂2E(x0; y, z)

∂x2
+ k2

xE(x0; y, z) = 0 (17)

with the general solution:

E(x0; ky, kz) = A(ky, kz)e
ikxx0 +B(ky, kz)e

−ikxx0 . (18)

In addition we assume

k2
x = k2 − k2

y − k2
z , k =

2π

λ
(19)

kx = (k2 − k2
y − k2

z)
1
2 where k2

y + k2
z ≤ k2, or (20)

kx = i(k2
y + k2

z − k2)
1
2 , where k2

y + k2
z > k2 (21)

Because the roots with k2
y + k2

z > k2 are evanescent and will decay rapidly away from the

layer, we will sample the field at a position x0 where the evanescent terms have decayed

and are negligible (as determined by tests). We would like to compute the scattered field
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emanating away from the target, therefore we will only consider the solution in a half space:

in the reflected region x < 0, B(ky, kz) = 0 (equation ??) and in the transmitted region x > 0,

A(ky, kz) = 0. We can proceed with the development using one side since the other differs

by a minus sign. For example on the transmitted side we can write the Fourier transform of

the electric field across any plane x = x0 as follows:

A(ky, kz)e
ikxx0 =

∫ ∫

E(x0; y, z)e
i(kyy+kzz)dkydkz (22)

where the scattered electric field E(x0; y, z) has been computed on a grid of points on a plane

x = x0 in the shadow zone (the TUR). The Fourier transform of the electric field on the

TUR gives the relative strength of each spatial frequency component A(ky, kz) composing

that field, and therefore of each plane wave stream leaving the TUR. The distribution of

energy as a function of spatial frequency k = 2π/λ should be highly localized at k2, allowing

us to determine k2
x = k2 − k2

y − k2
z . Its angular distribution is the angular distribution of

the emergent scattered intensity at the plane x = x0. Because the components A(ky, kz) are

formally fluxes, we must transform them into intensities (see section ??). This approach will

also provide a way to discriminate against any static components in the field; appearance

of significant anomalous energy at high spatial frequencies (i.e. much higher than |~k|), is an

indication of static, evanescent fields. If this problem were to appear (it has not yet, with

x0 ∼ λ), we would merely move the TUR slightly further from the face of the TUC.

3.C.1. Flux and Intensity

The discrete transform quantities Ai(ky, kx) with i = x, y, z represent components of plane

waves with some unpolarized, total flux density

∑

i=x,y,z

|Ai(θ, φ)|
2 (23)

propagating in the directions θ(ky, kz), φ(ky, kz), where the angles of the emergent rays are

defined relative to the normal to the target layer and the incident ray direction (θ0, φ0):

kx = kcosθ (24)

ky = ksinθsin(φ− φ0) (25)

kz = ksinθcos(φ− φ0) (26)

where k = 1/λ and we solve at each (ky, kz) for kx = (k2 − k2
y − k2

z)
1/2. It is thus an

implicit assumption that all propagating waves have wavenumber k = 1/λ; we have verified

numerically that there is no energy at wavenumbers > k, as might occur if the the DDFIELD

sampling layer at xo had been placed too close to the scattering layer.

From this point on, we assume fluxes are summed over their components i and suppress

the subscript i. The next step is converting the angular distribution of plane waves, or
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flux densities (energy/time/area), |A(ky, kz)|
2 into intensities (energy/time/area/solid an-

gle). Perhaps the most straightforward approach is to determine the element of solid angle

subtended by each grid cell dkydkz at (ky, kz): dΩ(θ, φ) = sinθ(ky, kz)dθ(ky, kz)dφ(ky, kz).

Then the intensity is

I(θ, φ) = |A(ky, kz)|
2/dΩ(θ, φ) = |A(ky, kz)|

2/dΩ(ky, kz). (27)

We have computed the elemental solid angles in two separate ways. One obvious but cumber-

some way to calculate dΩ(ky, kz) is to determine the elemental angles subtended by each side

of the differential volume element using dot products between the vectors representing the

grid points, and multiply them to get the element of solid angle dΩ(ky, kz). Another method

makes use of vector geometry to break dΩ(ky, kz) into spherical triangles (Van Oosterom

and Strackee 1983). These methods agree to within the expected error of either technique.

A simpler and more elegant approach is to rewrite equation ?? as

I(θ, φ) =

(

|A(ky, kz)|
2

dkydkz

)

dkydkz
dΩ(ky, kz)

= (
|A(ky, kz)|

2

(1/L)2
)

J dθdφ

dΩ(ky, kz)
, (28)

where we use standard Fourier relations to set dky = dkz = 1/L (see Appendix C), and the

Jacobian J relates dkydkz = J dθdφ:

J = (∂ky/∂θ)(∂kz/∂φ)− (∂ky/∂φ)(∂kz/∂θ) (29)

Then from equations (??-??) above do you mean (?? - ??)??? I can’t quite get the eqn refs

correct, J = k2sin(θ)cos(θ), and

I(θ, φ) =
|A(ky, kz)|

2(kL)2sin(θ)cos(θ)dθdφ

sin(θ)dθdφ
(30)

= |A(ky, kz)|
2cos(θ)(kL)2 = |A(ky, kz)|

2cos(θ)(L/λ)2. (31)

The above equations ?? - ?? demonstrate that dΩ = sinθdθdφ = sinθ(dkydkz/J ) =

sinθ(1/L2)/k2sinθcosθ = λ2/(L2cosθ). Numerical tests confirm that this expression repro-

duces the directly determined elemental solid angles, so we will use this simple closed-form

relationship.

After checking the region of k-space k2
y + k2

z > k2 for nonphysical, anomalous power and

thereby validating the location x0 of the sampled E(x0; y, z), and converting to intensity

as described above, the Cartesian grid of I(ky, kz) is splined into a polar grid I(µi, φj) with

coordinate values µi given by the cosines of Gauss quadrature points in zenith angle from the

layer normal. This splining is designed to eliminate the nonphysical region k2
y +k2

z > k2 from

further consideration, and streamline subsequent steps which will use Gaussian quadrature

for angular integrations of the intensities.
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The radiation on the forward-scattered side of the layer is all-inclusive - that is, includes

both the scattered radiation and the radiation which has not interacted with any particles

(the so-called “directly transmitted beam”). We obtain the intensity of the directly trans-

mitted beam after correcting for the smoothly varying, diffusely transmitted background,

allowing for the finite angular resolution of the technique, and from it, determine the effec-

tive optical depth τ of the target layer including all nonideal effects (see section ??). For

subsequent applications involving the adding/doubling techniques (not pursued in this pa-

per), the attenuation of the direct beam through each layer with the same properties will

simply scale as exp(−τ/µ). No such complication afflicts the diffusely reflected radiation.

3.D. Summary

As described in section ??, subroutine DDFIELD is used to determine the electric field

E(x0; y, z) on a 2D grid located a distance xo away from the layer (equations 12 and 13). The

sampling location x0 is adjustable within the shadow zone (the near field of the layer), but

should not be so close to the target as to improperly sample evanescent or non-propagating

field components from individual grains. Incident wave polarizations can be either parallel

or perpendicular to the scattering plane (the plane containing the mean surface normal ex

and the incident beam). At each incident zenith angle θ0, calculations of E(x0; y, z) are made

for many azimuthal orientations, (defined by the angle β) and in addition, calculations are

made for several regolith particle realizations (rearrangement of monomer configurations).

All scattered intensities are averaged incoherently. Such averaged intensities I(θ0, θ, φ− φ0)

can then be obtained for a number of incident zenith angles θ0, and determine the full diffuse

scattering function S(τ ;µ0, µ, φ − φ0) and diffuse transmission function T (τ ;µ0, µ, φ − φ0)

of a layer with optical depth τ and emission angle µ = cosθ, for use in adding-doubling

techniques to build up thicker layers if desired. As noted by Hansen (1969) the quantities

S(τ ;µ0, µ, φ−φ0) and T (τ ;µ0, µ, φ−φ0) can be thought of as suitably normalized intensities;

thus our fundamental goal is to determine the intensities diffusely scattered and transmitted

by our layer of grains. For the proof of concept purposes of this paper, it is valuable to have

both the reflected and transmitted intensities for layers of finite optical depth. We further

average the results for I(θ0, θ, φ − φ0) over (φ − φ0) to reduce noise, obtaining zenith angle

profiles of scattered intensity I(θ0, θ) for comparison with profiles obtained using classical

techniques (section ??).

4. Dielectric slab tests

The simplest test of our DDA model is simulating a uniform dielectric slab having refractive

index M = nr+ini, which has well known analytical solutions for reflection and transmission

given by the Fresnel coefficients. This slab test can be applied to both parts of our model: the
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electric field calculated on the TUR directly from dipole polarizabilities (using DDFIELD,

section 2.2) can be compared to Fresnel reflection and transmission coefficients, and the

Angular Spectrum technique (section 2.3), with all its associated conversions, can also be

tested by comparing the position and amplitude of the specular directional beam on the

reflected and/or transmitted sides of the slab with Fresnel’s coefficients and Snell’s law.

We used the DDA with PBC to simulate a slightly absorbing homogeneous dielectric slab

with M = 1.5 + 0.02i. The slab consists of 20x2x2 dipoles along its x, y, and z dimensions

and is illuminated at θ0 = 40◦. Figure ?? compares the amplitude of the electric field on our

TUR grid, on both the transmitted and reflected sides of the slab, with Fresnel’s analytical

formulae for the same dielectric layer. The dimensions of the slab are held constant while

the wavelength is varied, resulting in the characteristic sinusoidal pattern in reflection as

internal reflections interfere to different degrees, depending on the ratio of slab thickness to

internal wavelength. Transmission decays with increasing path length because of the small

imaginary index.

The results of figure ?? are orientationally averaged; the results for individual azimuthal

orientations β (not shown) contain a four-fold azimuthally symmetric variation of the electric

field, with respect to the slab, which we expect is an artifact of slight non-convergence in

the layer. The variation is smooth and less than the ten percent in magnitude, and when

our granular layer calculations are averaged over many (typically 40) values of the azimuthal

angle β (see figure ??) it becomes negligible.

To test the Angular Spectrum approach to getting the magnitude and angular distribution

of scattered radiation (section ?? and Appendix), we next analyzed the location and strength

of the specular beam on either side of the layer. We sampled the electric field vector on the 2-

D TUR grid of points, with Ny = Nz = 64, and took the Fourier transform of the vector field

separately for each coordinate (x, y, z). The power was obtained by squaring the transformed

amplitudes from each coordinate (equation ??). Contour plots of scattered intensity (figure

??) show the specular peak of the reflected intensity for various incident angles, along with

a diffraction pattern at the 1% level resulting from the square (unwindowed) TUR aperture.

We can see that as we change the incidence angle, the emergent specular beam changes

location in k-space (θ, φ space) appropriately, confirming that our model is consistent with

Snell’s law. We also verified that the magnitude of the flux density - the intensity integrated

over the specular peak - is equal to the power |E2
o | in the E field on the TUR (which also

matches the Fresnel coefficients).

We then assessed the effect of dipole scale resolution using the dielectric slab. Since the

PBC calculations are computationally challenging (requiring multiple processors and days

to reach convergence) we were encouraged to use the most relaxed |M |kd criterion to reduce

computation time while exploring a range of variations in packing density, over a number
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Fig. 4. Left: The transmission coefficient for a slightly absorbing dielectric

slab as a function of wavelength, for two different planes of polarization. The

red triangles show the square of the electric field amplitude calculated on the

TUR by DDFIELD, and the solid and dashed lines (‖ and ⊥ or TE and TM

modes respectively) are the Fresnel intensity coefficients for the same slab in

orthogonal polarizations. The slab is h =20 dipoles (6 µm) thick with an index

of refraction M = 1.5 + 0.02i, and the wavelength λ varies between 4.5-9µm

(see section 3.2). Right: Comparison of the Fresnel reflection coefficients for

the same slab (lines) with square of the electric field amplitude as calculated

by DDFIELD (triangles) on the TUR on the opposite side of the TUC.

of target realizations and orientations. Traditionally it is assumed that the grid dipole size

d must result in |M |kd ≤ 0.5 to get acceptable convergence (Draine and Flatau 1994). To

explore this further, we looked at the variation of the electric field reflected and transmitted

by a dielectric slab with various |M |kd values ranging between 0.4-1.0. In figure ?? we can

see that the field variation and its comparison with Fresnel’s coefficients is in acceptable

agreement (within less than 20% in the worst case) for |M |kd values below 0.8 and diverges

from there. Further tests are discussed below, using actual granular layers. In this first paper

we have pushed the envelope somewhat, to complete more cases at an exploratory level, so

do not claim accuracy better than 15% on average, but have never exceeded |M |kd = 0.8.

Clearly, for future applications, it is always good to increase resolution to achieve better

accuracy when quantitative results are of importance.
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Fig. 5. Specular reflection from a dielectric slab, from the output of our angular

spectrum approach, shown in spatial frequency or k-space with axes (ky, kz),

and overlain with red symbols (in the online version) indicating the grid of

(θ, φ) onto which we spline our output intensities. The results are shown for

for three incident radiation angles: θo = 20◦, 40◦, and 60◦. The emergent beam,

shown as black contours, moves in k-space at the correct emergent angle for

specular reflection. The lowest contours, at the level of 1% of the peak in all

three cases, show the sidelobes arising from Fourier transforming our square

TUR.

5. Granular layers

Here we introduce granular layers, which produce more complex, diffusely scattered intensity

distributions. For this first study we took the simplest approach to generating granular layers

by populating the TUC with spherical monomers of the same size and composition which

may overlap, as distinguished from a “hard sphere” approach where spherical monomers can

only touch (eg. Richard et al 20?? one of Denis’ papers, with a figure of his aggregate). Our

primary motivation for this choice, at this stage, is better control over the porosity or filling

factor of the granular target. The most dense granular TUC’s we have studied have a filling

factor of 77%. Because the monomer size is comparable to the wavelength, our working limit

of roughly several million dipoles is reached with dense targets that are about five monomers

deep and 6-7 monomers across, making up a TUC box with several hundred monomers

(assuming |M |kd = 0.8) and a few thousand dipoles per monomer. For comparison, figure

?? shows the dense target (essentially a solid with internal voids, because of the extensive

overlap of nominally spherical monomers) as well as a target of more moderate porosity,

having filling factor of 20%. In the more porous target, the same number of active dipoles

(dipoles representing scattering material) is contained in a larger and deeper TUC. We have

found that memory limitations per processor on typical massively parallel systems (such as
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Fig. 6. Tests of the code resolution, defined by the product |M |kd, normally

said to require |M |kd ≤ 0.5. Top: Reflectivity in orthogonal polarizations from

a dielectric layer for various |M |kd values ranging between 0.4-0.9 compared

with Fresnel’s analytical solution. Bottom: The percent difference between

Fresnel’s coefficient and the dielectric slab reflectivity. symbols and axis labels

must be larger (and label coordinates); but I would like to remove this plot.

I don’t think its necessary and we can just say that according to our tests

mkd=0.8 gave us satisfacory results.

.

the Altix at Ames Research Center that we used for this study) restrict the maximum volume

of the TUC, regardless of the number of active dipoles, and we typically expand or contract

the maximum dimension (remaining within tolerable limits) to generate targets of variable

filling factor while maintaining the same number of monomers, to keep the effective optical

depth of the target constant while porosity is varied. The periodic boundary conditions

mirror the target in its smaller dimensions; our target is less like a pizza box than a brick

standing on end.

As before, the scattered field I(θ, φ) from each target is calculated for each combination

of incident polarization and azimuth orientation β, and averaged incoherently for each po-

larization over azimuth angle φ to get an intensity profile as a function of zenith angle θ

for a given orientation β, which are then averaged to get a single I(θ) profile. We selected
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Fig. 7. Two of our granular target Unit Cells (TUCs). Left: Granular TUC con-

structed by overlapping monomers with 77% packing fraction; Right: Granular

TUC with 20% packing fraction; the long axis is Lx. The grid in the 77% case

is roughly 100 dipoles on a side so the monomers are each composed of ap-

proximately 4000 dipoles.

SiO2 as our target material, because several of the best constrained laboratory studies, with

careful determination of grain size distributions, used SiO2 grains (see section ??). We use

quartz refractive indices from Wenrich and Christensen (1996) for these monomers at 15.5µ

wavelength, which is in the middle of the deepest “transparency band” (all the transparency

bands are problematic for current models as discussed in section ?? and shown in figure ??).

In all granular cases so far we assumed an incident beam at incidence angle θ0 = 40◦.

5.A. Granular layer tests at high and moderate porosity

For granular layers, we first assess varying dipole resolution and different target realization

(a new realization is an independent configuration of randomly placed monomers, having

the same overall porosity). Averages over β orientations and orthogonal polarizations are, as

always, done incoherently, and additional averages over scattering azimuthal angle φ−φ0 are

taken to produce plots of intensities as a function of emission angle θ (viewing angle from

layer normal). In related tests (not shown) we also compared averaging in k-space, prior to

splining our intensity results onto grids of (θ, φ); it turned out that the profiles were more

repeatable and smoother done after splining and averaging in azimuth. As an example of the

variance across the different orientations, see figure (???) let’s add one figure showing some

plot with all 40 individual reflectivity or transmissivity profiles, and the average)..

Two cases of the the same target realization of the dense target (77% filling factor), but

processed with different resolutions of |M |kd = 0.5 and |M |kd = 0.8, and one case for

a second realization, are shown in figure ??. The scattered field has a continuous diffuse

component as opposed to the flat dielectric slab’s single specular peak, due to the granular

structure in the layer. There is a remnant of the 40◦ specular peak visible in these cases

22



Fig. 8. replot this vs sin(zenith angle) and check units on vertical axis Reflected

intensities for two realizations (solid and dotted blue, with the average of the

two in green) of a granular layer with 77% filling factor and |M |kd = 0.8. The

averaged intensity for one of the realizations, but using |M |kd = 0.5, is shown

in red for comparison. Variations due to different realizations are small (at

least for this dense target) and variations with |M |kd are within an acceptable

limit for our initial studies, in which we will not study detailed variations in

the shape of these profiles but only their overall level and trends (see section

??).

because the granular TUC is almost dense and smooth enough to be a solid surface (see figure

??). Figure ?? shows that the scattered intensity varies by about 10% between the two |M |kd

cases, and the two realizations with the same resolution agree even better. We expect that

our more sparse targets will require more realizations to achieve this level of convergence,

because of their higher entropy in a sense. The effects of the somewhat lower resolution

than ideal (|M |kd = 0.8) are quantitatively discernible but not qualitatively significant, and

consistent with our uncertainty goals for this first paper.

We also assessed the convergence associated with the lateral size of the TUC (Ly, Lz) by

comparing the reflected and transmitted intensities from various TUC sizes. As shown in

figure ??, the intensities calculated using targets of several (transverse) sizes are adequately

size convergent at the level of accuracy we have decided to tolerate for this first study, so we

will generally use the smallest TUC to speed up our calculations.

Note that figure ?? shows how the directly transmitted beam appears in our DDAmodeling
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Fig. 9. need to separate these two panels more horizontally. Reflected and

transmitted intensity as a function of zenith angle for 0.2 filling factor gran-

ular layer targets of various sizes. looks like 20% target, compare with figure

??, please confirm, and also which target size we actually used for these.. but

note the vertical scale is completely different between this figure and figure ??.

Note the appearance of the directly transmitted beam Ioexp(−τ/µo (see text).

Convergence is excellent for the provide specific dimensions for the three target

sizes and relabel x axis.

(it is inextricably part of the field on the transmission side of the target). The amplitude of the

directly transmitted beam decreases, of course, as the optical depth of the layer increases

(see more discussion of this below and in section ??), and a similar-looking contribution

from a diffusely transmitted, forward-scattered lobe becomes more possible. Particle sizes

in question are too small to produce a forward-scattering lobe as narrow as the directly

transmitted beam seen in figure ?? and similar figures in this paper, for wavelength-grain

combinations treated here. We can use the amplitude of the direct beam to determine the

actual optical depth of the layer, and compare that with the value predicted by Mie theory

extinction efficiency Qe: τ = Nπr2Qe(r, λ)/LyLz, where N is the number of monomers of

radius r in the TUC, and its cross-sectional size is LyLz . We have not yet assessed in detail

the degree to which porosity affects the classical dependence of extinction τ(µ) = τo/µ, where

τo is the normal optical depth.
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5.B. Granular layers: High porosity and comparison with classical models

An instructive experiment is to increase porosity until the monomers are far enough apart

where they scatter independently, as verified by agreement with one of the classical solu-

tions to the radiative transfer equation. It has been widely accepted that the independent

scattering regime is reached when monomers are within three radii (most of these trace to

an offhand statement in Van de Hulst 1957; see Appendix A also). This criterion was also

discussed by Cuzzi et al (1980) and by Hapke (2008; see appendix A) there must be better refs

in the Appl Opt universe). Our initial results (discussed below) did not obviously confirm

this criterion, so we ran an additional set at “ultra-low” porosity (filling factor = 0.01 where

we were certain it would be satisfied (see eg Edgar et al 2006, Ishimaru and Kuga 19??,

etc.... )

For the classical model we used the facility code DISORT (refs???) which calculates the

diffuse reflected and transmitted intensity at arbitrary angles, for a layer of arbitrary optical

depth τ , given the phase function P (Θ) and single scattering albedo ̟o of the constituent

scattering particles. In DISORT we use 40 angular streams and expand the phase function

into 80 Legendre polynomials. We calculate P (Θ) and ̟o for our model grain population

using Mie theory, assuming a Hansen-Hovenier size distribution with fractional width of 0.02.

The mean monomer radius is exactly that of the DDA monomers for this case. Our Mie code

has the capability to model irregular particles with the semi-empirical approach of Pollack

and Cuzzi (1979), in which the phase function and area/volume ratio is modified somewhat,

but that is not used at this stage and the particles are assumed to be near-spheres. No effort

is made to truncate or remove any part of the phase function.

For the purpose of the present paper, we did not map out a fine grid of porosities to

determine exactly where the independent scattering criterion is violated (see eg. Edgar et al

2006 for some hints). It is not implausible that this threshold will be some function of the

ratio of grain size to wavelength (Hapke 2008) and a careful study of this is left for a future

paper. For this paper our main goal is to get a final sanity check on the DDA code - to see that

indeed it does properly manifest the scattering behavior of a low volume density ensemble

of monomers, in the limit where we are confident this should be the case. Because memory

limitations prevent us from simply expanding our 40-monomer targets to yet lower filling

fraction, we constructed a different target, with only four monomers, keeping its dimensions

within the capabilities of the Altix (figure ??). The target construction initially allowed one

or more monomers to be clipped by the planar edge of the TUC, needlessly complicating the

scattering pattern, so we revised the target code and re-ran it with only four monomers and a

volume filling factor of 0.01, the scattered light patterns are highly configuration-dependent,

so we needed to run a number of realizations to achieve convergence in the scattered fields.

Figure ?? shows a comparison of the diffusely reflected and transmitted fields at 15.5µm
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Fig. 10. A single realization of the ultraporous target. etc etc

wavelength, averaged over azimuthal angle as before, for 20µm diameter SiO2 monomers,

compared with the DISORT predictions based on Mie albedos, extinction efficiencies, and

phase functions for grains of these properties (but assuming a Hansen-Hovenier size distribu-

tion with width variance b=0.02). No correction was made for grain irregularity, but it is not

implausible that something could be done, to allow for the fact that our monomers do not

look as “spherical” as those in figure ?? but have raggedy edges due to the finite gridding.

This figure averages intensities calculated from 1 realizations of the target.

Several interesting points may be made from figure ??. It is the first figure in which a direct

comparison is made between DDA and “theoretical” diffuse transmissivities. The nominal

diffraction pattern of our TUR, as viewed from off axis at 40◦, is (not quite correctly) modeled

by a simple (sinθ/θ)2 function because the mostly symmetric direct peak (see eg figure ??)

is actually flattened by averaging on contours of constant θ. In comparing our DDA diffuse

transmissivities with the DISORT values (which do not include the direct beam) we avoid

regions that are plausibly contaminated by the sidelobes of the direct beam.

It is apparent that the diffusely reflected and transmitted intensities should and do increase

towards grazing viewing angles in the actual case, as is seen in the DISORT results. Our

intensities fail to match this behavior for zenith angles θ → π/2 because the summing of

contributions from polarized dipoles into the TUR field, at a small distance above or below

the target, only includes mirror cells out to a finite distance; thus intensities at truly grazing

angles are not properly captured by the angular spectrum step. The same effect appears to

varying degrees in diffuse intensities seen in figures ?? and ?? as well. As this is a known

limitation of the model (correctable in principle given more computational time) we neglect

these angular regions in assessing the fit of the DDA solution to the DISORT solution.

Overall it seems we hope!! that the DDA/angular spectrum approach captures the ap-

propriate diffuse reflected and transmitted intensity, using only the nominal particle albedo,

extinction efficiency, and phase function calculated by Mie theory, when the porosity of the

scattering volume is as low as 0.01 as here.
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Fig. 11. Comparison of diffusely reflected (left) and transmitted (right) in-

tensities from our ultrahigh porosity TUC (filling factor 0.01), with classical

predictions for the nominal optical depth and monomer properties, using DIS-

ORT. The large peak in the transmitted intensity is the direct beam, broad-

ened by our numerical resolution, for which an approximate analytical form

(essentially (sinθ/θ)2) is overlain based on the dimensions of the TUR and

the wavelength. The discrepancy between DDA and DISORT at large zenith

angles is discussed in the text. obviously we need more realizations! See below

for more like what we need, one R and one T.
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6. Results: Effects of increased packing density in granular layers

Fig. 12. Reflected and transmitted intensity as a function of zenith angle for

granular layers of various filling factors. All layers are composed of 20µm di-

ameter quartz monomers and illuminated at 15.5µ wavelength from 40◦ zenith

angle. The more porous layers quickly lose the specular reflection shown by

the densest layer, and have higher diffuse reflection and lower “diffuse” trans-

mission, showing the direct beam as the expected narrow peak. The intensity

of the “direct beam”, and the diffuse transmissivity, shows a complex behavior

(see text); for instance there is a transition porosity (50%; green curve) which

shows no directly transmitted beam at all. need to add the 0.01 case in here

and plot vs sin of zenith angle; also check vertical scale.

Starting with our densely packed TUC (filling factor 0.77; figure ?? left), we increased

the depth of our TUC in the direction normal to the layer, merely expanding the monomer

populations, to achieve successively lower filling factors of 0.50, 0.20 (figure ??), and 0.1. We

calculate filling factors for these layers by taking the ratio of the number of quartz dipoles

to vacuum dipoles in the TUC box. This is the range of porosities expected for planetary

regoliths, for instance (P. Christensen, personal communication 2009). All these targets are

modeled with the same amount of quartz material (the same size and number of monomers).

This way, we can isolate the effect of packing on the scattered intensity. For reference, the

nominal optical depth of the most porous TUC, containing N = 4 SiO2 monomers of radius

rg, is

τ = NQextπr
2
g/LyLz , (32)
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where Qext = 3.7 is the extinction coefficient at 15µm wavelength (from Mie theory) and the

TUC has horizontal dimensions Ly and Lz, leading to a nominal value of τ ∼ 0.2.

The results are shown in figure ??. The dense layer (black curve) resembles a homogeneous

dielectric layer with a slightly rough surface (it has a specular peak), and has the lowest

diffuse reflectivity. The diffuse reflectivity increases monotonically with increasing porosity.

This behavior is contrary to what is predicted (and often, but not always, seen) for layers of

different porosity in the past (eg Hapke 2008, other refs), perhaps because previous models

and observations tend to emphasize grain sizes much larger than the wavelength in question

(we return to this below and in section ??).

The behavior in transmission is more complex, and not a monotonic function of poros-

ity. For instance, the lowest filling factor (highest porosity) targets show a clear directly

transmitted beam, the amplitude of which is consistent with the nominal optical depth of

several (need to verify and quantify this). As porosity decreases, the intensity of the direct

beam decreases even though the nominal optical depth of the target (equation ??) remains

constant. This suggests that, in the sense of equation ??, Qe is increasing with porosity. For

porosity of 50%, the direct beam vanishes entirely. As porosity is decreased still further, a

strong and broad pattern of “direct transmission” re-emerges.

We believe this behavior represents different regimes of forward propagation of the di-

rect and diffusely transmitted radiation. For our highly porous layers where there are large

vacuum gaps between monomers, the beam is extinguished as I/Io = exp(−τ/µo) where

the optical depth τ = NQextπr
2
g/LyLz; Qext is the extinction coefficient, rg is the radius of

each monomer, and N/LyLz is the particle areal density defined as the number of particles

per unit area of the layer. On the other hand, an electromagnetic beam traveling through

a uniform, homogeneous dielectric layer is attenuated as I/Io = exp(−4πniz/λ) where z is

the path length and ni is the imaginary refractive index. For the dielectric slab, this direct

beam is augmented by multiply-internally-reflected waves, and the emergent beam is a com-

bination of these leading to a delta function in the forward direction given by the Fresnel

transmission coefficient. Our 77% filled target is not truly homogeneous, and has vacuum

pockets with angled interfaces that deflect and scatter the forward-moving radiation into a

broader beam or glare pattern. This physics determines the strength and general breadth of

the forward-directed radiation seen in the black curve of figure ?? (right panel).

The case with 50% filling factor is an interesting transition region where, we believe, the

monomers are closely packed enough to introduce interference effects and the vacuum gaps

are large and abundant enough to contribute to strong interface or phase shift terms (see

Vahidinia et al 2011 and section ??). The interface and interference terms are so significant

in this case that they completely extinguish the “directly transmitted” beam before it gets

through this layer. That is, its apparent optical depth τ , or more properly its extinction, is
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much larger than either higher or lower porosity layers containing the same mass in particles.

maybe we need a table showing ̟, τ or Qe for the different porosities..

We can use DISORT to quantify the behavior of the layers as filling factor increases,

starting with the classical case (section ?? and figure ??) where Mie theory leads to par-

ticle properties that adequately describe the diffuse scattering and extinction The reflected

intensities are more well behaved, so we start there. Figure ?? shows the diffusely reflected

intensities at 15.5µm wavelength, as functions of zenith angle, for filling factors of 0.09, 0.15,

0.02, and 0.50. In each case the smooth curves represent our best fit DISORT model, with

τ chosen to give consistent intensities for the diffusely reflected and transmitted intensities.

Deviation of τ from the classical independent scattering value is taken as evidence for devi-

ation of Qe from the classical value. The diffuse intensities also depend on ̟o, and so we can

tell whether it is Qs or Qa that is changing, or both. We have made an attempt to adjust the

phase function P (Θ) in plausible ways, to allow for the fact that monomer overlap leads to

larger typical particle sizes as well as greater deviation from sphericity; to do this we applied

the Pollack and Cuzzi (1979) semi-empirical adjustment to P (Θ), which has the effect of

augmenting scattered energy at intermediate scattering angles. We have made no special

attempt to truncate or remove the diffraction lobe, because for particles with these sizes, it

is not straightforward to separate from other components refracted by or externally reflected

from the particle.

Work to do here: matching all these porosities, transmission, τ , etc with DISORT. Maybe

we need a table giving ̟o and Qe from DISORT for each of the porosity cases.

Fig. 13. It would be nice to model both the diffuse R and T, and the direct

beam τ , for some or all four filling factors: 0.09, 0.15, 0.2, and 0.5.

Discuss optical depths;
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a table??

porosity ̟Mie ̟DDA τMie τDDA c d

0.0001 5.000e-10 0.0001 12 19.26 1.013e-08 1.234e+16

0.0001 1.000e-09 0.0001 10 8.578 3.339e-07 5.942e+14

0.0001 3.000e-09 0.0001 9 3.931 3.696e-05 6.764e+12

0.001 3.000e-09 0.0001 8 1.656 8.010e-05 3.932e+12

0.001 3.000e-09 0.0005 10 7.831 7.194e-06 1.233e+13

0.001 3.000e-09 0.001 11 19.73 6.971e-08 7.144e+14

0.01 1.000e-09 0.0001 12 5.421 1.951e-06 6.408e+13

0.01 1.000e-09 0.0005 11 5.404 1.723e-06 4.087e+13

0.01 1.000e-09 0.001 10 8.578 3.339e-07 1.879e+14

7. Toy model of the physics

8. Conclusions

We have developed a new end-to-end approach for modeling regolith radiative transfer for

monomers of arbitrary size, shape, and packing density. The approach starts with adapting

the Discrete Dipole model to a case with periodic horizontal boundary conditions, to mimic

a small piece of a semi-infinite slab of regolith. The internal fields in the DDA target are

then summed on a grid located in the near field, or more correctly the Fresnel zone, of the

target layer. This 2D field is transformed to an angular emergent intensity field using the

angular spectrum approach. The various parts of this approach have been thoroughly tested

in several ways by comparison with theoretical behavior of a dielectric slab (Fresnel’s ana-

lytical coefficients), including the angular behavior of specular reflection and transmission.

The discrete monomer aspect of the code was tested by comparison with a classical multiple

scattering technique (Mie scattering and the DISORT facility code).

Our primary result of interest from the standpoint of application to planetary regoliths,

is that realistic porosity is out of the regime which can be properly treated by simple mod-

els; this has been known before, in fact (MC95). However, we do illustrate that a correct

treatment of porosity does lead to better agreement with actual experimental data. That

is, figure ?? shows that realistic layers have higher emissivity in transparency bands than

predicted by any current model; our models show just the right behavior, in that layers

with porosity in the realistic range have lower reflectivity than classical models that assume

nominal grain properties, which by Kirchoff’s laws, means higher emissivity. We show using

a “toy model” that treats layered media, that increasing filling factor makes interface terms

more important, lowering the reflectivity of individual “slabs” (monomers) below their inde-

pendently scattering (Fresnel coefficient) values and lowering the reflectivity of the layered

target below that which obtains when the “slabs” are widely spaced. This is consistent with
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our finding that the primary effect is a decrease in particle albedo ̟o. all the above is of

course speculation at this point, not having seen any toy model result yet. What about tau,

also?.

The code is computationally demanding, and currently pushes the memory limits of

NASA’s largest massively parallel computers. However there is nothing but compute power

to limit its scope of applications, and these limitations will become less restrictive in time.

For instance, the first DDA case studied by Purcell and Pennypacker (1973) was limited to

targets of fewer than ?? dipoles.
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Appendix A: Porosity

Hapke (2008) presents a discussion of regimes of particle size-separation-wavelength space

where particles may or may not be regarded as scattering independently and incoherently, an

assumption on which current models of RRT are generally based. His results are summarized

in his equation (23) and figure 2, in which a critical value of volume filling fraction φ is given at

which coherent effects become important, as a function of D/λ where D is particle diameter.

The model assumes the particles have some mean separation L. In cubic close-packing, 8

spheres each contribute 1/8 of their volume to a unit cell of side L. Thus the volume filling

fraction φ = (4πD3/24L3) = π
6
(D/(D + S))3 = π/6(1 + S/D)3 (Hapke 2008, equation 23).

The physics is actually quite simple; it is assumed that coherent effects play a role when the

minimum separation between particle surfaces S = L−D < λ, and the rest is algebra. The

curve in figure 2 of Hapke 2008 is simply φ = π/(6(1 + λ/D)3), that is, merely substitutes

λ = S in the definition of filling factor. Nevertheless it graphically illustrates the expectation

that traditional “independent scattering” models will be valid only at much smaller volume

filling factors when D/λ < several, than for D/λ ≫ 1. Still it is based on a premise that

coherency emerges when S = L − D ≤ λ. In fact the asymptote at D/λ ≫ 1 may only be

due to the fact that in the sense of packing, the assumptions of the model equate this limit

to D/S ≫ 1, or the close-packing limit when changing volume density has little effect on

anything. The premise is that of van de Hulst (1957), that coherency effects are negligible
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when the particle spacing exceeds several wavelengths (cite page).

In a model study of particle scattering at microwave wavelengths, Cuzzi and Pollack (1979;

Appendix) hypothesized that coherent effects entered when the shadow length ls = D2/2λ

exceeded the distance to the next particle along a particular direction2, l∗ = 4L3/πD2.

The distance l∗ is different from the mean particle separation, or nearest neighbor distance,

l = N−1/3 where N = 6φ/πD3 is the particle number per unit volume.

It appears that, at least in the planetary science and astronomy literature, there are no

more firm constraints than these. Our results are broadly consistent with these estimates,

although we find nonclassical effects setting in at somewhat lower volume densities than these

estimates would predict, in the regime where D ∼ λ. we haven’t shown this yet..... Moreover,

our results show that the effects of nonclassical behavior - even the sign of the deviation from

classical predictions - depend on the refractive indices of the particles. In future work, based

on studies such as we present here, these simple limits can be improved and refined, and,

perhaps, simple corrections may be developed which depend on particle refractive indices.

Appendix B: Need for near field sampling

Here we illustrate why the traditional application of the DDA code, in which the scattered

fields have been evaluated at “infinity”, introduces artifacts in our application, where the field

scattered from a horizontally semi-infinite layer is being sought. For simplicity we consider a

finite thickness dielectric slab with real refractive index nr, illuminated at normal incidence

by a plane wave with electric field Ei. For a slab which is laterally infinite (W → ∞) the

wave inside and outside the slab can be easily solved for by equating boundary conditions

at z = 0 and z = H (see figure ??), resulting in explicit equations for the coefficients A

and B, which then determine the internal fields, and the Fresnel reflection and transmission

coefficients R and T (solutions found in many basic electrodynamics textbooks).

The first novelty in our application is implementation of periodic boundary conditions

which mirror the TUC (of finite widthW ) laterally; this has the effect of removing edge effects

in the internal fields and, for the dielectric slab, would ensure that the internal field, within

the TUC of width W , obeys essentially the classical solution. However, the original procedure

with this modeling, as in all previous applications of DDA, was to calculate the scattered

field from the TUC (the “target”) alone, and moreover at infinity, using the Fraunhofer

approximation to the free space Green’s function. Unfortunately this introduces artifacts

into the solution we desire, which is that from a truly laterally infinite slab. Below we sketch

the nature of these artifacts, and motivate our approach to avoid them.

We use the Fresnel approximation to the free-space Green’s function (valid in general, not

2This is derived setting the expectation length l∗ as that distance at which the probability of a “hit” on

another particle is unity: N(πD2/4)l∗ = 1, giving l∗ = 4/πD2N = 4L3/πD2.
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merely at infinity) to illustrate that the problem is not alleviated merely by making this

simple change. In this case, the full solution for the scattered field at vector distance r is

given by

E(r) = Ei(r) + k2(n2
r − 1)

∫

V
G(r, r′)Ei(r

′)dV (33)

where k = 2π/λ, the volume V represents the slab of thickness H and two-dimensional width

W in (x, y), and

G(r, r′) =
ejk|r−r′|

4π|r− r′|
(34)

is the free space Green’s function, for which the Fresnel regime approximation is

G(r, r′) ≈
1

4πz
ejk(z−z′)e

jπ

2
[
(x−x′)2

F2 +
(y−y′)2

F2 ], (35)

where F =
√

λz/2 is the Fresnel scale. The Fresnel approximation is valid when (z− z′)2 ≫

(x− x′)2, (y − y′)2 but does assume z ≫ z′; that is, it remains a far-field solution.

Substitution of equation (??) into equation (??) (for illustration we consider only z > H)

then leads to:

E(r) = ejkz + k2(n2
r − 1)

ejkz

4πz

∫ H

0
e−jkz′[Aejk1z

′

+Be−jk1z′]dz′
∫ ∫ W/2

−W/2
e

jπ

2
[
(x−x′)2

F2 +
(y−y′)2

F2 ]dx′dy′.

(36)

The above solution can be written as

E(r) = ejkz + I1(z)I2(z), (37)

where

I1(z) = 2jF 2k2(n2
r − 1)

ejkz

4πz

∫ H

0
e−jkz′[Aejk1z

′

+Be−jk1z′]dz′ (38)

I2(z,W ) =
∫ ∫ W/2

−W/2
e

jπ

2
[
(x−x′)2

F2 +
(y−y′)2

F2 ]dx
′

F

dy′

F
. (39)

The function I2(z,W ) is the Fresnel transform of a uniform square aperture of side W .

Because our periodic boundary condition method ensures the internal field will assume its

proper value for a laterally infinite target, we could make use of the plane-parallel solutions

for the (known) coefficients A and B alluded to above in calculating I1(z) from equation

(??). More directly, for purposes of illustration, we note that I1(z) is independent of W , so

can be directly evaluated in the case W → ∞, where the full solution is known at z > H to

be E(r) = Tejkz (see figure ??), and the integral I2(z) takes the form

I2(z) =
1

2j

∫ ∫ ∞

−∞
ejπ/2[η

2+ζ2]dηdζ = 1. (40)
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Then from equation (??), I1(z) = E(r)− ejkz = (T − 1)ejkz. The general result, for finite W ,

then becomes

E(r) = ejkz + (T − 1)ejkzI2(z,W ). (41)

To clarify the significance of the result, we add and subtract a term Tejkz to equation (??),

to get

E(r) = Tejkz + (ejkz − Tejkz) + (T − 1)ejkzI2(z,W ) (42)

= Tejkz + (1− T )ejkz[1− I2(z,W )] = E∞(r) + EW(r). (43)

We can interpret this result as a superposition or modulation of the desired field E∞(r),

arising from a slab which is laterally infinite, with a perturbation field EW(r) arising from

the diffraction pattern of the truncated slab of finite width W . The perturbation term EW(r)

(second term of final expression) vanishes either if the slab indeed does not interact with the

incident wave (T = 1) or if the slab is infinitely wide (W → ∞, in which case I2(z,W ) → 1).

It is essentially the Fresnel diffraction pattern of the area that is left out when an infinite slab

is truncated to finite width W . In principle, the same approach can be used in the reflection

regime z < 0, and a similar result is achieved. Indeed our initial numerical solutions which

evaluated the scattered field from the TUC using the standard Fraunhofer free-space Green’s

function in the DDA code showed essentially this behavior, which we thus can identify as an

artifact if our solutions are intended to apply to a laterally infinite slab of material.

To avoid the artifact we need to let our TUC extend to W → ∞, in which case we would

literally be in the “shadow” of the layer and edge effects would vanish. As this is numerically

unfeasible, our solution instead is to nestle our sampling grid very close to our finite size TUC.

That is, as noted above, the Fresnel solution above is valid when (z−z′)2 ≫ (x−x′)2, (y−y′)2

and z ≫ z′. More rigorously, it and the diffraction perturbation it contains (equation ??),

apply outside the “shadow zone” of the slab, where z > zshad = W 2/2λ (see figure ??).

Only for z > zshad have waves emanating from the perimeter of the slab had a chance to

interact with each other and create the Fresnel diffraction pattern leading to the perturbation

I2(z,W ). Physically speaking, if our layer really were laterally infinite in extent, any sampling

point would be within its “shadow” and the emergent intensity from the layer alone would

be properly calculated without the perturbation due to a finite sized TUC.

At all times, however, we are wary not to place our sampling grid too close to the target

surface, where evanescent effects might corrupt our signal; these fall off very quickly (roughly

as z/λp??check this exponent), we have a procedure for detecting their presence (section ??)

and we have not found them to be a problem as long as z − H > λ. The success of this

strategy is shown in the various tests we have conducted (sections ?? and ??). Of course

this logic applies mathematically for both z > H and z < 0, but is easier to visualize for a

“shadow” zone at z > H .
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Fig. 14.

Appendix C: Fourier sampling

We use the formalism of the angular spectrum, described by Mandel and Wolf (1994, section

??). The angular spectrum A(ky, kz) and the field on a grid E(x0; y, z) are often defined

as infinite-domain Fourier transform pairs (see below). We will use the “cycles” definition

of frequency (in our case, spatial frequency) rather than the “radians” definition used by

Mandel and Wolf (MW) for simplicity; this removes floating factors of (1/2π). We will

retain the transform “direction” notation of MW, which is common (see also Blackman and

Tukey method in Stoica and Moses 1997, SM97); in this convention the frequency-dependent

function is obtained using the negative exponential. We note that Numerical Recipes (Press

et al. 1999) adopts the opposite “direction” convention, which we feel leads to less intuitive

results in the frequency domain. In the 1D case, with y spatial, and k spatial frequency,

coordinates respectively, the infinite Fourier Transform reads:

g(k) =
∫ ∞

−∞
f(y)e−2πiykdy (44)

f(y) =
∫ ∞

−∞
g(k)e2πiykdk (45)

MW and other authors discuss the angular spectrum only in the context of the infinite

Fourier Transform shown above, where the dimensions of f(y) and g(k) are different, but

for practical reasons we will be using discrete or finite Fourier Transforms. This leads to
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subtle but important differences. In particular, changing to the finite transform pairs f(y)

and a(k) = g(k)/L and then expressing them in their discrete series forms leads to:

a(k) = g(k)/L =
1

L

∫ L/2

−L/2
f(y)e−2πiykdy ≈

1

N∆y

∑

l

f(yl)e
−2πiylk∆y, , (46)

or, now also discretizing k:

a(kα) =
1

N

∑

l

f(yl)e
−2πilα/N (47)

f(yl) =
∑

α

a(kα)e
2πilα/N (48)

where yl = l∆y, kα = α∆k, and ∆k = 1/(N∆y) where N is the number of points in both

the y and k arrays. Note that the dimensions of f(y) and a(k) are the same. This convention

seems to be the more common one, in that the prefactor goes with the negative sign in the

exponential, and the negative sign is used to generate the function defined in frequency space

(SM97).

We thus trivially rewrite the transform pair of MW, using their equations 3.2-19,20,23,25,

and 27, as

U(ky, kz) =
∫ ∞

−∞

∫ ∞

−∞
E(0, y, z)e−2πi(yky+zkz)dydz (49)

E(0, y, z) =
∫ ∞

−∞

∫ ∞

−∞
U(ky, kz)e

2πi(yky+zkz)dkydkz. (50)

The electric field E is sampled on the plane x = x0 (note this is not the center of the layer);

note that E and U have different dimensions.

We now consider the associated discrete Fourier transform, on the finite plane of dimension

L2. By analogy to the 1D case (equation ??) we define a slightly different vector transform

function Ai(ky, kz) = Ui(ky, kz)/L
2 (where i = x, y, z component of each quantity) as the

two-dimensional finite Fourier Transform of the 3D complex vector electric field strength

Ei(x0; y, z) (x0 can be chosen =0):

Ai(ky, kz) =
1

L2

∫ L/2

−L/2

∫ L/2

−L/2
Ei(x0; y, z)e

−2πi(yky+zkz)dydz, (51)

where we note as that in SM97, the numerical scaling prefactor is associated with the neg-

ative exponential transform into frequency space. This (finite) integral transform is readily

replaced by a discrete summation, where we substitute yl = l∆, zm = m∆, ky = αdk,

kz = βdk, and l, m, α, and β are integers, where ∆ = dy = dz is the grid spacing in the

Cartesian (y, z) DDFIELD grid. From sampling theory, dk = 1/L where L is the full lin-

ear extent of the 2D grid of E(y, z) (the TUR, assumed to be square), and the maximum
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resolvable spatial frequency is kmax = 1/∆; typically −kmax/2 ≤ (ky, kz) ≤ kmax/2. Then

Ai(ky, kz) =
1

(N∆)2

N/2
∑

−N/2

N/2
∑

−N/2

Ei(x0; yl, zm)e
−2πi(lα+mβ)∆/N∆∆2 (52)

Ai(ky, kz) =
1

N2

N/2
∑

−N/2

N/2
∑

−N/2

Ei(x0; yl, zm)e
−2πi(lα+mβ)/N , (53)

where here Ai(ky, kz) and Ei(x0; yl, zm) have the same units. Using this transform convention,

the discrete form of Parseval’s theorem reads

∑

α

∑

β

|Ai(α, β)|
2 =

1

N2

∑

l

∑

m

|Ei(l, m)|2, (54)

which is intuitively meaningful because the wave’s E field (nominal magnitude Eo) covers all

N2 points in the (y, z) grid, but the equivalent emerging plane wave only occupies a single

grid cell in the (ky, kz) grid. The convention in Numerical Recipes makes less sense in our

context. So, if |Eo|
2 is a spectral flux density (energy/area/time/wavelength interval) then

so is |A(α, β)|2 (leaving aside issues of the permittivity of free space this sounds a little loose,

can we do better??? ). This relationship was numerically verified in our code.

The orthogonal components Ex, Ey, and Ez are separately transformed and combined.

The output Ax, Ay, Az could be used to calculate polarization state (Apar, Aperp), which are

both, by definition, perpendicular to the ray direction at (ky, kz), but because we are only

interested in intensity, we simply sum the squares of Ai as noted above.

Overly coarse sampling of k−space can result in poor estimates of the locations and

magnitudes of narrowly defined emergent rays; unfortunately the dimension of the DDFIELD

grid is computationally constrained to some degree because our version of DDFIELD is

extremely time consuming; a new, faster version is available at http: Bruce’s new DDFIELD

Reference. For now, we overcome this obstacle by zero-filling the array E(x0; y, z) out to some

considerably larger extent L′, retaining the original array as a subset. Upon transforming

this larger array we achieve spatial frequency resolution dk′ = 1/L′ ≪ dk = 1/L; this

high resolution reveals the true locations and amplitudes of the peaks by over-resolving (at

dk′ = 1/L′) the intrinsic angular width in wave number space dk = 1/L. Tests conducted

using this simple trick provided a very regular and reliable reconstruction in k-space of both

the direction and amplitude of incident plane waves crossing the DDFIELD grid in a variety

of directions. This is a valuable approach, because the compute time needed to converge a

DDFIELD grid of size N2 is roughly dependent on N2, while the time needed to perform an

FFT of a significantly zero-filled grid grows only as N logN .

The more highly resolved plane wave fluxes A′
i(k

′
y, k

′
z), are smaller in magnitude than a

value which lies entirely in a single (ky, kz) bin and represents the entire plane wave. This
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is because, as flux densities, the more highly resolved results of the zero-filled calculation

each represent the intensity integrated over a smaller solid angle. To obtain the total flux

density in the wave, we would sum over the narrow “packet” of rays, each having angular

width dk′
ydk

′
z lying in a scattered lobe of (larger) angular width dkydkz. Nevertheless, an

effective intensity can be determined for each of these rays, given by its flux divided by

its corresponding solid angle. As defined this way, the intensity is invariant to zero-filling,

because the flux in a (ky, kz) bin simply decreases with the angular width of the bin. That

is, A′
i(k

′
y, k

′
z)/dk

′
ydk

′
z = Ai(ky, kz)/dkydkz. In section ??, we show how we determine true

intensities (flux density per unit solid angle).
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